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Abstract     

Regulators often rely on regulated entities to self-monitor compliance, creating strategic incentives 

for endogenous monitoring. This paper builds a framework to detect whether local governments 

skip air pollution monitoring when they expect air quality to deteriorate. The core of our method 

tests whether the timing of monitor shutdowns coincides with the counties’ air quality alerts – 

public advisories based on local governments’ own pollution forecasts. Applying the method to a 

monitor in Jersey City, NJ, suspected of a deliberate shutdown during the 2013 “Bridgegate” traffic 

jam, we find a 33% reduction of this monitor’s sampling rate on pollution-alert days. Building on 

large-scale inference tools, we then apply the method to test more than 1,300 monitors across the 

U.S., finding 14 metro areas with clusters of monitors showing similar strategic behavior. We 

assess geometric imputation and remote-sensing technologies as potential solutions to deter future 

strategic monitoring. 
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1. Introduction 

When regulators face substantial monitoring requirements, they commonly ask regulated 

entities to monitor their own compliance. Police officers are charged with turning on/off body 

cameras that verify their maintenance of ethical behavior; hospital staff transcribe operation events 

to catalog surgeons’ regulatory compliance; countries self-monitor greenhouse gas emissions to 

demonstrate adherence to climate commitments. This system of self-monitoring is particularly 

common within environmental regulation, where local entities – such as state governments and 

individual firms – assume the roles of both the subject of regulation and the recorder of pollution 

data that demonstrate compliance. Can federal regulators rely on the regulated to provide complete, 

representative self-monitoring data? We study this question in the context of U.S. air quality 

regulation, where state and local governments monitor air pollution to demonstrate compliance 

with federally set air quality standards. We show that state agencies’ leeway to decide when (not) 

to monitor, combined with the ability to anticipate pollution events in the near future, results in 

strategic timing in monitoring activities at some locations. We begin with a motivating anecdote, 

followed by an econometric analysis of the general prevalence of strategic monitoring.  

 On September 9th, 2013, two of three lanes to the George Washington Bridge closed for 

five days at the toll plaza connecting Fort Lee, New Jersey and Manhattan, New York for what 

was initially said to be a traffic study. The event was later found to be a deliberate act of political 

retribution.1 Coincidentally, at the time of the Bridgegate-induced traffic jams, a nearby fine 

particulate matter (PM2.5) air pollution monitor on the rooftop of the Jersey City Firehouse stopped 

collecting data. The monitor, placed by the state government to continuously monitor compliance 

 
1  See Wikipedia, The Free Encyclopedia, s.v. “Fort Lee lane closure scandal,” (accessed November 13, 2020), 

https://en.wikipedia.org/wiki/Fort_Lee_lane_closure_scandal  
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with federal Clean Air Act mandates, was later found to have been inoperative for 13 days 

(September 6th–18th), the longest inactive period recorded in the decade since its installation. While 

an investigation by the U.S. Environmental Protection Agency (EPA) blamed “equipment 

malfunction,”2 the timing of the incident has raised concerns that the monitor was intentionally 

disabled so that it would not record the spike in air pollution caused by the Bridgegate traffic jam.  

 This incident raises a general question of whether local officials are able to deliberately 

halt pollution monitoring when they anticipate the monitor will record elevated pollution levels. 

First, state governments have the incentive to “game.” While the federal EPA sets the national air 

quality standards (NAAQS), states and local governments self-monitor compliance with these 

standards. When state governments’ own monitoring indicates a lack of compliance, they bear the 

regulatory penalties including elevated requirements of expensive emission-reduction investments. 

Second, state governments have the discretion to game. While the federal EPA encourages states 

to stick to their monitoring schedules as strictly as possible, states have significant leeway, with 

every monitor typically allowed to miss up to 25% of its scheduled data during each quarter. Third, 

state governments have the ability to game. In many states, the same agencies that carry out 

monitoring also run advanced air quality forecasting – providing these agencies with the best data 

and forecasts of air quality in the near future. Despite these concurrent factors, the current system 

is not set up to detect strategic monitoring. Missing days are ignored by the federal regulators, 

implicitly assuming that pollution levels on monitored days are equal to pollution levels on 

unmonitored days. This tolerance for gaps in compliance monitoring data may induce strategic 

timing in state and local agencies’ self-monitoring activity.3  

 
2 Enck, Judith. Regional Administrator of the U.S. Environmental Protection Agency Region 2. Letter to Jeff Ruch, 

Executive Director of the Public Employees for Environmental Responsibility. February 28, 2014. 
3 In Appendix A, we present a stylized model of self-monitoring that illustrates the challenges a regulator faces in 

eliciting complete and unbiased monitoring results from a regulated entity. 
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 We propose an econometric framework that assesses whether air pollution monitors 

strategically shut down to avoid sampling on high-pollution days – specifically focused on 

identifying individual monitors whose pattern of shutdowns suggests gaming. Our framework has 

three components. The first component infers the government’s expectation of high-pollution 

events through locally issued air quality alerts. These public advisories calling for citizens to 

reduce outdoor activities and vehicle use are often issued when forecasts predict that air pollution 

will exceed the Clean Air Act standards. We use an event study to assess whether a monitor’s 

sampling rate falls when pollution alerts are in place. As a motivating example, our analysis begins 

with the sampling patterns from the PM2.5 monitor at the Jersey City Firehouse (JCF). Our analysis 

focuses on the JCF monitor’s data capture rate: the share of scheduled monitoring days in which 

the monitor produces readings. Analyzing 21 alerts sent by Jersey City from 2007 to 2014, we 

show that the data capture rate of the JCF monitor drops significantly during pollution alert weeks 

(declining by 10 percentage points from a mean of 88%) and especially during the alert day itself 

(declining by 28 percentage points). Though we do not directly address the reasons for the failure 

of the JCF air pollution monitor during the Bridgegate incident, our analysis indicates that the JCF 

monitor’s sampling pattern over the seven-year period is consistent with strategic shutdowns 

during times of high pollution.  

 The second component of our framework incorporates simultaneous inference. We repeat 

the Jersey City Firehouse monitoring exercise to analyze 1,359 monitors that are set up to 

continuously sample air quality compliance for six different pollutants (PM2.5, PM10, O3, NO2, SO2, 

and CO) throughout the contiguous United States. These monitors are located in 167 counties with 

similar pollution alert programs. Importantly, our task is not to estimate the response of the average 

monitor, but instead to pinpoint which monitors are gaming the regulatory design by excluding 
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days likely to have high pollution levels. This inference problem poses two challenges, which we 

address with large-scale inference tools (Efron, 2012). First, for each individual monitor, the event-

study test for strategic shutdowns likely uses a small sample due to the limited number of alerts 

and/or short time series for the monitor. Consequently, traditional inference comparing the test 

statistic with its theoretical (asymptotic) null distribution is likely invalid. We remedy this issue 

with a randomization inference scheme, which allows us to generate an empirical null distribution 

based upon “placebo” event studies that each use randomly dated pollution alerts (Rosenbaum, 

2002). We then calculate p-values, for each monitor, as the proportion of the empirical null 

distribution that is more extreme than the observed effect. Second, by testing a large number of 

monitors, there is risk of overstating the confidence of rejection for any individual monitor. We 

address this risk in several ways, including an assessment of the p-value histogram (we find an 

overabundance of tests with small p-values; see e.g., Hung, O’Neill, Bauer and Kohne, 1997; 

Simonsohn, Nelson, and Simmons, 2014), a standard false discovery control strategy (Benjamini 

and Hochberg, 1995), and an “eye-ball” screening of monitors whose patterns of strategic 

missingness are the most visually apparent. Following these steps, we generate a list of “interesting” 

monitors whose distinctive monitoring patterns warrant further regulatory attention.4 We post 

detailed estimation results for all monitors on a publicly available website. Together, these first 

two steps of detection and inference offer researchers and policymakers the ability to narrow in on 

a potentially small subset of gamers within a much larger population of monitors/agencies. 

 The third component of our framework is economic characterization. We document key 

characteristics of these interesting monitors, and we shed light on underlying mechanisms for the 

patterns we see. We discover two primary features. First, we map the locations of the interesting 

 
4 We follow Efron (2012)’s language on the large-scale inference goal of detecting “interesting” units. 

https://www.google.com/maps/d/u/0/edit?mid=1e6vuA_OXa-QfCMrYanwkWV7XiGl50d1q&usp=sharing
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monitors, and find 14 metro areas with clusters of interesting cases. Because the statistical 

procedure to determine interesting monitors does not use geographic proximity as an input, the 

fact that interesting cases cluster in specific regions suggests state- and/or local-government 

influences. Second, we use regression analysis to characterize counties with interesting monitoring 

patterns, and we find that a county’s Clean Air Act compliance status plays a major role. For 

example, our state fixed effects regression suggests that being located in a noncompliant 

(nonattainment) county raises the probability a monitor is “interesting” by 64 percent, compared 

to other counties within the same state. Regressions with additional county-level characteristics, 

such as environmental friendliness, government size, and corruption, show limited explanatory 

power conditional on nonattainment status. Together, these test results support our hypothesis that 

strategic shutdowns arise from state and local governments’ incentives to avoid or alleviate 

nonattainment penalties. 

 One possible way federal regulators could deter strategic shutdowns would be filling in 

missing monitoring data with values that better approximate the true air quality conditions, rather 

than omitting the missing days from records. We first build a PM2.5 pollution dataset with imputed 

values based on inverse distance weighting (IDW), a spatial-averaging prediction method 

commonly used in the epidemiology and the economics literatures to infer air quality at an 

unmonitored location using available data from nearby monitors (e.g., Shepard, 1968; Schwartz, 

2001; Currie and Neidell, 2005). We adapt this idea to our study context in which data are 

temporally incomplete; we impute a monitor’s missing value on a given day by using the inverse 

distance-weighted average of data from a set of nearby “donor” monitors on that day. Because 

donor monitors that are closer to the monitor of interest are more heavily weighted, we use a liberal, 

20-mile search windows for donor monitors. This allows the IDW to provide substantial coverage 
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while still preserving local variations in pollution concentration. We find that the IDW is able to 

explain 81.4% of observed PM2.5 variation and provide predictions for 38.6% of the missing 

values.5 In a complementary exercise, we consider an alternative imputation method that uses 

newly available atmospheric modeling-based PM2.5 products (Di et al., 2019) thanks to the 

increasing availability of satellite observations of air pollution. This second imputation is 

methodologically more complex, but is able to provide imputation values for all days. We use 

these imputed datasets to illustrate that among the aforementioned interesting monitors, the 

distribution of pollution on “unobserved” days exhibits a longer right tail – a pattern that replicates 

in both the IDW data and the modeling data. No such pattern is observed for non-interesting 

monitors, where the distribution of pollution across observed and unobserved days are 

indistinguishable from each other. In other words, although our quasi-experimental framework 

detects strategic monitors using a specific indicator – low levels of data capture rate around 

pollution alerts – these monitors turn out to the ones, and likely the only ones, that are generally 

strategic in sampling air quality. Had the measurements been taken for the interesting monitors, 

PM2.5 levels would have exceeded the 15 ug/m3 annual standard on 23% of these missing days 

and would have exceeded the 35 ug/m3 daily standard on 2.7% of the unmonitored days. These 

findings suggest strategic shutdowns could have misled federal compliance status designations.6 

We hope our method may provide the regulator with a tractable route to assessing strategic 

shutdowns beyond the scope of this study – such as monitors located in areas without pollution 

alert programs. 

 
5 The remaining missing observations are too far from non-missing monitors to use IDW with any confidence. 
6 We calculate that the forgone health values from air quality improvements that the county would otherwise have 

enjoyed without strategic monitoring amount to about $67 million (2020 dollars) per strategic monitor per year 
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 We believe that the strategic self-monitoring problem highlighted in this paper is an 

underappreciated challenge for environmental compliance. We reported our findings to members 

of the federal EPA’s ambient air quality monitoring group.7 Officials with whom we spoke reacted 

that the shutdowns may be explained by local agencies’ benevolent actions to prepare for incoming 

pollution episodes by taking the monitors offline and conducting maintenance.8 In fact, we take 

away from the conversation that federal regulators tend not to worry about strategic responses in 

ambient air quality monitoring programs in which the entity of regulation is the state/local 

government – at least much less so than they would worry about point-source monitoring where 

the entity of regulation is often a company. The officials do agree with the importance of 

identifying interesting monitors. In their language, while these patterns do not necessarily suggest 

the local agencies are doing something “wrong”, it is worth informing the corresponding agencies 

that their data look “different” from the data generated by others. We hope our analysis can raise 

awareness about monitoring and enforcement challenges associated with the tension between the 

imperative of national environmental protection and individual states’ compliance incentives 

(Giles, 2020). 

The existing literature on environmental federalism emphases the role of decentralization 

on policy decisions such as inter-regional competition of environmental standards (e.g., Oates, 

2001; Levinson, 2003; Millimet, 2014). Our work contributes to an emerging literature on 

monitoring and enforcement (e.g., Gray and Shimshack, 2011; Shimshack, 2014; Evans and 

Stafford, 2019) which emphasizes the fact that federalism in environmental legislations – and in 

many other regulatory contexts too as we mentioned at the beginning of this paper – often comes 

 
7 We held a 1-hour meeting with a senior staff scientist and a statistician, both with expertise in ambient air quality 

monitoring and enforcement. Our discussion primarily focused on Figures 1A, 3, 4, and 5 of this paper. 
8 We believe these explanations do not fit the data. Our findings suggest that, if anything, such maintenance actions 

have caused the monitors to miss out the incoming pollution peaks. 
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with the decentralization of the responsibility of monitoring and enforcement as well, creating 

potential principle-agent type of incentive misalignment in local agencies’ self-monitoring 

activities. We believe this paper is among the first to examine selective monitoring as local 

agencies’ strategy to help achieve environmental compliance. We corroborate an emerging 

literature that reveals strategic actions that contribute to an underrepresentation of high-pollution 

observations in states’ self-monitored air quality data in the U.S. (Fowlie, Rubin, and Walker, 2019; 

Sullivan and Krupnick, 2019). Examples of strategic actions include states’ decisions as of where 

to locate pollution monitoring sites (Grainger, Schreiber, and Chang, 2017) and where to locate 

polluters (Morehouse and Rubin, 2021); in a related paper, Zou (2021) presents evidence of 

strategic polluting suppression in places where pollution monitoring follows pre-scheduled on-

and-off cycles (the effect of monitoring on strategic polluting behavior). Our paper presents the 

converse setting in which monitors that are scheduled to operate continuously choose to 

strategically shut down in response to expected high pollution events (the effect of pollution on 

strategic monitoring behavior). 

Similar phenomenon has been observed in developing country settings as well, where local 

officials’ desire to demonstrate air quality achievements has impaired truthfulness in pollution 

monitoring (Andrews, 2008; Chen, Jin, Kumar, and Shi, 2012; Duflo, Greenstone, Pande, and 

Ryan, 2013; Duflo, Greenstone, Pande, and Ryan, 2018; Ghanem and Zhang, 2014; Karplus, 

Zhang, and Almond, 2018; Ghanem, Shen, and Zhang, 2020; Greenstone, He, Jia, and Liu, 2020; 

He, Zhang, Wang, 2020; Yang, 2020).9 Our analysis is also inspired by Bennear, Jessoe, and 

 
9 A related literature analyzes emission test cheating and collusion behavior in the vehicle sector (e.g., Oliva, 2015; 

Reynaert, 2020; Ale-Chilet et al., 2021; Reynaert and Sallee, 2021). Our paper is also related to the broader forensic 

economics literature that aims at detecting hidden, socially undesirable actions, often by modeling honest behavior 

and testing for deviations. We are grateful for Jay Shimshack who pointed us to this strand of literature. See Zitzewitz 

(2012) for a review.  
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Olmstead (2009) who showed that, in the context of drinking water regulation, local agencies 

undertook more testing to avoid the appearance of violating environmental standards. 

Methodologically, we demonstrate that basic econometric tools can assist in making 

individualized conclusions about where strategic behavior occurs. The empirical literature 

typically identifies the average extent of an activity and subgroup heterogeneity, but rarely seek to 

provide insight into exactly where “interesting” behaviors may merit a closer look. Policymakers, 

on the other hand, often care more about actionable evidence than of broader characterizations of 

the extent of a problem. Our paper aims to provide concrete evidence for regulatory responses. On 

this front, we are related to recent development in the application of large-scale inference tools, 

where the research goal is to credibly detect a relatively small group of interesting units among a 

sea of null (Efron, 2012).10 

 Section 2 provides background and a description of the data. Section 3 explains our 

framework and discusses the results. Section 4 describes the imputation method and the results. 

Section 5 concludes. 

 

 
10 See applications in bioinformatics, such as high-throughput screening for drug discovery (Malo et al., 2006), and 

genomics/proteomics data analysis (Dudoit, Shaffer, and Boldrick, 2003; Bantscheff et al, 2007; Huang, Sherman, 

and Lempicki, 2009). Within economic applications, we are most closely related to the literature on permutation 

inference (e.g., Barrios, Diamond, Imbens, and Kolesár, 2012; Buchmueller, Miller, and Vujicic, 2016; Young, 2016; 

Hagemann, 2019), multiple hypothesis testing (e.g., Anderson, 2008; Heckman et al., 2010; Finkelstein et al., 2012; 

Christensen and Miguel, 2018; Jones, Molitor, and Reif, 2019; List, Shaikh, and Xu, 2019; Kline and Walters, 2021; 

Kline, Rose, and Walters, 2022) and heterogeneous treatment effects estimation (e.g., Athey and Imbens, 2016; 

Chernozhukov, Demirer, Duflo, and Fernandez-Val, 2018; Davis and Heller, 2020).  
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2. Background and Data 

2.1. Clean Air Act and Ambient Air Quality Monitoring 

 The National Ambient Air Quality Standards (NAAQS). The U.S. Clean Air Act (CAA) 

delegates the U.S. Environmental Protection Agency (EPA) to set up safety standards in the form 

of maximum concentration levels for outdoor air pollution. These are the National Ambient Air 

Quality Standards (NAAQS). Since the 1970s, the EPA has set up NAAQS for “criteria” air 

pollutants including particulate matter (PM2.5 and PM10), ozone (O3), nitrogen dioxide (NO2), 

sulfur dioxide (SO2), lead (Pb), and carbon monoxide (CO). The CAA charges state governments 

with monitoring air quality within their own jurisdictions. The federal EPA uses states’ submitted 

data to categorize counties into “attainment” (adhering to the standards) and “nonattainment” 

(violating the standards) groups. Most criteria pollutants have two standards: a 24-hour standard 

and an annual standard; ozone’s standard is based upon an 8-hour period. For example, a county 

falls into PM2.5 nonattainment if its three-year average for PM2.5 exceeds 15 ug/m3, and/or if the 

three-year average of annual 98th percentile concentration values exceeds 35 ug/m3. The most 

updated NAAQS for all criteria pollutants are listed in the federal EPA’s NAAQS Table 

(https://www.epa.gov/criteria-air-pollutants/naaqs-table).   

 Nonattainment counties face substantially elevated regulatory costs for both existing and 

prospective entities. The state is required to develop a State Implementation Plan (SIP) that details 

plant-specific regulations to bring the county back into compliance. These regulations typically 

involve the adoption of expensive pollution abatement technologies and emission limits on 

existing factories. Factories planning new production capacity in nonattainment jurisdictions must 

adopt technologies with the “lowest achievable emission rate,” irrespective of the cost of doing 

https://www.epa.gov/criteria-air-pollutants/naaqs-table
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so.11 Local governments and individual polluters occasionally receive direct penalties from the 

EPA in cases of sustained nonattainment. The NAAQS provision functions as the CAA’s ultimate 

safeguard for outdoor air quality. Its regulatory incentives for the state economy – with respect to 

the compliance costs, firms’ productivity changes, and labor market implications – have been 

widely documented in the literature (e.g., Greenstone, List, and Syverson, 2012; Walker, 2013; 

Blundell, Gowrisankaran, and Langer, 2018; Shapiro and Walker, 2020). A separate strand of 

literature finds evidence that by directing regulatory resources toward sources in high-pollution 

areas, local governments have been able to achieve localized air quality improvements near the 

violating monitors (e.g., Bento, Freedman, and Lang, 2015; Auffhammer, Bento, and Lowe, 2019). 

 EPA Rules for Incomplete Monitoring. To demonstrate compliance with NAAQS, states’ 

monitoring data must satisfy completeness goals. Appendix Figure B.1 tabulates the EPA’s 

completeness goals for each of the criteria pollutants (U.S. EPA, 2013). The typical requirement 

is for each monitor to take at least 75% of required samples per quarter of the year. What happens 

if monitoring data fall below the completeness goals? In principle, incomplete data cannot be used 

to demonstrate compliance, and the areas is thus designated as “unclassifiable.” In practice, an 

unclassifiable county is treated just as an attainment county. However, if statistics computed from 

incomplete data suggest a potential violation of NAAQS, then the EPA can invoke rights to assign 

“nonattainment” status using limited data available. For example, in the case of PM2.5 monitors, 

only 11 days of observations per quarter are needed for the EPA to designate violation – if, for 

example, the average of the available observations exceeds the annual standard of 15 ug/m3. If the 

monitor collects even fewer than 11 samples per quarter, the CAA gives the EPA the right to use 

 
11 Lowest Achievable Emission Rate, or LAER, refers to technologies that achieve the lowest possible emission rate 

in practice without cost consideration. In contrast, new sources in attainment jurisdictions comply with the Best 

Available Control Technology, which is often much less strict and allows for considerations of energy, environmental, 

and economic impacts and other costs. 
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alternative data. The federal regulation states that the EPA administrator “may consider factors 

such as monitoring site closures/moves, monitoring diligence, the consistency and levels of the 

daily values that are available, and nearby concentrations” in determining attainment / 

nonattainment status.12  

 These rules imply that the completeness goal per se is not subject to gaming. A violating 

area cannot bring itself out of nonattainment simply by reducing its data capture rate below 75% 

per quarter because nonattainment can be designated using very limited data (11 observations); for 

a non-violating area, it makes little difference if its quarterly capture rate is above the 75% level 

(attainment) or below (unclassifiable). However, strategic responses can arise when local 

monitoring agencies skip high-pollution days to water down the average (or whatever relevant 

statistics) of captured pollution, which is the focus of this study. 

 How Do Monitors Work and Why Do They Miss Data? Ambient pollution monitoring 

involves measurement acquisition, quality assurance, and data submission. Here we briefly 

describe each step and explain ways in which data missingness may arise in each of these steps. 

Our primary reference is the EPA’s Quality Assurance Handbook for Air pollution Measurement 

Systems (U.S. EPA, 2013).  

 Measurement Acquisition. The monitoring process begins with in situ ambient pollution 

sampling at states’ monitoring sites. From the outside, a monitoring site looks like a fenced shelter; 

Panel A of Appendix Figure B.2 provides an example. The structures seen on the rooftop are 

sampling air inlets. Most of the pollution analyzers reside inside the shelter and its HVAC-

controlled environment. One exception is mass filtration-based particulate pollution monitors, 

 
12 40 C.F.R. Appendix N to Part 50 - Interpretation of the National Ambient Air Quality Standards for PM2.5. 
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which are less sensitive to ambient temperature changes; these monitors are often placed directly 

on the rooftop. Panels B and C of Appendix Figure B.2 provide an example shelter design. The 

actual sampling procedure differs by the type of pollutant being monitored. For example, 

particulate pollution sampling (PM2.5, PM10, and Pb) often requires manual collection of pollution 

filters and subsequent laboratory analysis; trace gas (such as ozone) sampling is done with fully 

automated laser-based methods, and the results can be obtained on site. Monitoring fieldwork is 

done by state personnel or contractors with appropriate training in ambient pollution monitoring.  

 It is worth noting that EPA imposes stringent standards on which monitoring technologies 

can be used towards states’ air quality monitoring. Monitors using technologies certified by the 

EPA (known as Federal Reference Methods or Federal Equivalence Methods) are expected to 

robustly operate under various meteorological and pollution conditions. Pollution monitors are 

also not expected to “max out” at the ranges of air pollution concentrations observed in the U.S. 

For example, all regulatory PM2.5 monitors are capable of measuring 24-hour fine particulates 

mass concentration of at least 200 ug/m3, while over 99% of daily monitor readings in our study 

sample are below 100 ug/m3. Given these demands for regulatory monitors, there is little reason 

to expect a “spontaneous” relationship between monitor performance and meteorological or 

pollution conditions.  

 The missing-data problem can arise at measurement acquisition stage. Reasons for 

missingness may include instrument malfunction, sample contamination, preventive maintenance, 

staff shortage, power outage, or, as we argue in this paper, strategic non-sampling.   

 Quality Assurance. The missing-data problem can also occur if a monitor fails periodic 

quality control (QC) processes conducted by the state agency. For example, once every two weeks, 

a monitor is required to go through a one-point QC check in which the monitor is exposed to a gas 
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of known concentration. If the test exceeds the EPA’s specified critical criteria for the one-point 

QC check (e.g., in the case of ozone, the critical criterion is that the measured concentration 

exceeds the true concentration by more than 7%), the monitoring agency voids all previous 

readings from that monitor, indicating that data are missing for the period extending back to the 

date when the monitor passed the previous one-point QC check. Similar checks are done for other 

instrument tasks, such as monthly flow rate audits. 

 It also bears mentioning how extreme values are treated in the QC process. The EPA 

guideline encourages manual inspections of all data to spot unusual values, which can be used to 

“indicate a gross error in the data collection system.” Importantly for our study, an outlier is 

considered valid until there is an explanation for why the data should be invalidated, for example, 

if a subsequent one-point QC fails.   

 Data Submission. Finally, the processed and quality-controlled data are submitted by the 

state to the federal EPA’s Air Quality System (AQS) for NAAQS compliance determination. The 

federal EPA has the ultimate authority to decide whether it will use a monitoring agency’s 

submitted data in determining NAAQS compliance. Occasionally, the EPA has invalidated data 

submitted to the AQS after failures in federal audits. For example, in a recent incident, a contract 

laboratory’s audit failure led data from four states to be suspended from NAAQS comparison 

(https://www.epa.gov/air-trends/pm25-data-omitted-air-trends-assessment).  

 Which types of missingness might explain strategic monitor shutdowns on days with high 

pollution levels? We first note that the latter two categories – data elimination due to QC failures 

– are not relevant to the context of this paper. This is because QC failures result in the deletion of 

large segments of monitoring data, ranging from at least two weeks in the event of a failed one-

https://www.epa.gov/air-trends/pm25-data-omitted-air-trends-assessment
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point QC check to years in the case of lab audit failure. In contrast, the strategic shutdowns we 

hypothesize and empirically observe are predominantly short-term in nature. 

 Within the first category – transient data loss during the measurement acquisition stage – 

we can further categorize shutdowns into spontaneous and strategic types. Spontaneous shutdowns 

are conceivable if high levels of pollution induce malfunctions in the monitoring equipment and/or 

result in staff shortages. As previously mentioned, monitoring systems are mostly safeguarded in 

HVAC-protected environments and are designed to withstand severe pollution levels, which are 

rarely encountered in the U.S. Another possible scenario is that high pollution levels lead to a staff 

shortage necessary for data collection. However, the majority of the monitors we examined – 

including all those for non-particulate pollutants – operate on continuous monitoring systems that 

do not require daily maintenance.13    

  We are, therefore, left with the interpretation that strategic shutdowns – where local 

authorities deactivate monitoring in anticipation of impending high-pollution days – are a more 

likely explanation. The objective of our paper is to empirically test this hypothesis. 

 

2.2. Pollution Alerts 

 Pollution alerts are based on air quality forecasts made by state and local agencies using 

chemistry transport models, such as the Community Multiscale Air Quality Modeling System 

(CMAQ).14 An alert is issued when unfavorable local weather events (thermal inversions, light 

 
13 For instance, a common continuous monitoring technology is known as the Beta-Attenuation Method (BAM). In 

principle, a BAM monitor can operate continuously for a two-month period before the replacement of its tape is 

required. Of course, maintenance of the device may be necessary more frequently, but certainly not on a daily basis. 

See https://metone.com/products/e-bam-plus/  
14 https://www.epa.gov/cmaq/cmaq-models-0  

https://metone.com/products/e-bam-plus/
https://www.epa.gov/cmaq/cmaq-models-0
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winds, high pressure zones, etc.) and emission events (traffic congestion, wildfires, etc.) are 

expected to push air pollution to unhealthy levels as defined by the NAAQS nonattainment 

standards.15  

Appendix Figure B.3 shows the distribution of the forecasted Air Quality Index associated 

with the alerts. The distribution exhibits substantial pileup at the AQI cutoff of 100 (at which point 

the AQI code moves from “Moderate” to “Unhealthy for Sensitive Groups”) and the cutoff of 150 

(at which point the AQI code becomes “Unhealthy”).  

 From Appendix Figure B.3, notice that the issuance of alerts is not a knee-jerk response 

with respect to forecasted AQI – for example, not all alerts are issued exactly at the AQI=100 

cutoff. Why would local authorities issue alerts when forecasted air quality is good (e.g., in the 

“green” and “yellow” zones)? We calculate that, among the alerts with forecasted AQI<100 – on 

days with good forecasted air quality where alerts were issued nonetheless – about 28% of the 

time, the realized AQI actually exceeds 100. This prediction performance significantly surpasses 

pure chance: Using forecasted AQIs on both alert and no-alert days, we calculate that the average 

odds of realized AQI>100 when forecasted AQI<100 is only 6%. This suggests that local 

authorities have additional private information beyond what is embedded in the CMAQ model to 

form pollution expectations, and that by using alerts, we can capture some of this additional 

information.  

 Another related question is whether the issuance of alerts can be strategic. For example, in 

the same spirit of Ghanem and Zhang (2014) and Bennear, Jessoe, and Olmstead (2009), could 

there be instances where local authorities, even though anticipating severe air pollution, 

 
15 Pollution alerts are often salient. Previous research has shown that alerts suppress outdoor activities and influence 

transportation choices (Neidell, 2009; Cutter and Neidell, 2009; Graff Zivin and Neidell, 2009). 
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intentionally refrain from issuing alerts to avoid public uproar? We believe his form of 

manipulation is unlikely prevalent. In the Online Appendix, we present the distribution of 

forecasted AQI on days that no alerts are issued, and we show that there is a discrete decline of 

data mass at forecasted AQI=100. This holds true for both NAAQS attainment and non-attainment 

counties. Put differently, it is rare for authorities to abstain from issuing an alert when the 

forecasted air quality is poor.  

Finally, we are unaware of any institutional reasons for a mechanical link between alerts 

and missing monitoring data. To the extent that a forecasting algorithm uses monitoring data as 

predictors for future pollution, lower data capture on higher pollution days, if anything, would 

decrease the odds of pollution alerts, generating a positive correlation between capture rate and 

alerts. Alerts are associated with changes in general atmospheric conditions, such as temperature 

and precipitation, which could influence monitors’ data capture due to equipment and/or staff 

performance. However, such mechanical association would affect all monitors, and it should not 

be specific to “interesting” monitor groups. We provide further details in Section 4.1 where we 

discuss the empirical strategy.     

 

2.3. Data 

 Pollution Monitoring. Pollution monitoring data come from the EPA’s Air Quality 

System (AQS) database. We use AQS Daily Summary Data which contain information from every 

monitor for each day from 2004 to 2015. A daily summary record is the aggregate of all sub-daily 

measurements, typically 24 hourly samples taken by the monitor. Our primary variable of interest 
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is a monitor-by-day level indicator for missing data, i.e., none of the sub-daily measurements being 

available.  

 Pollution Alerts. We obtain air pollution alerts data through the EPA AirNow (airnow.gov) 

Action Day Program. Action Day provides a tracker of all air quality alert programs implemented 

by state and local agencies.16 The database we use contains a total of 33,357 pollution alerts issued 

by 342 jurisdictions between 2004 and 2015. An advisory is often issued one day ahead of the 

actual alert day. We use the alert day itself to define the timing of pollution alert events.   

    

3. Framework and Evidence  

 This section describes the three components of our framework and presents our findings. 

We begin in Section 4.1 with the Jersey City Firehouse (JCF) PM2.5 monitor and explain how we 

test for strategic shutdowns for a single monitor. Section 4.2 describes the simultaneous testing 

problem where we scale up the exercise in Section 4.1 to all 1,359 monitors. Section 4.3 presents 

an econometric analysis of the characteristics of monitors that are deemed “interesting” by the 

testing process. 

 

 
16 For example, this includes the “Spare the Air” program in the Bay Area of California (https://www.sparetheair.org/), 

and the “High Pollution Advisory” program managed by the state of Arizona (https://ein.az.gov/keywords/high-

pollution-advisory). A full list of programs contained in the database is here: https://www.airnow.gov/aqi/action-days/. 

https://www.sparetheair.org/
https://ein.az.gov/keywords/high-pollution-advisory
https://ein.az.gov/keywords/high-pollution-advisory
https://www.airnow.gov/aqi/action-days/


20 
 

3.1. Test of Individual Monitor: The Jersey City Firehouse Monitor as an 

Example 

 Using an event study framework, we model the JCF monitor’s “capture rate” of PM2.5 data 

– an indicator variable equaling “1” when scheduled monitoring occurs – around the timing of 

pollution alerts (the “events”). There are a total of 37 pollution alert days in Jersey City during our 

study period. Alerts are sometimes issued for several consecutive days, in which case we keep the 

first day of the episode to avoid overlapping windows and focus on the alert issuance effect. This 

leaves us with 21 pollution alert events. For each alert event, we pull the JCF monitor’s operational 

status 30 days before and 30 days after the alert day, forming an event study dataset with 1,281 

observations (21 alert events multiplied by the 61-day event study window for each alert). The 

estimation equation is: 

Capture Ratet = 1 − 𝕀(Missing PM2.5 Data)t = ∑ βτ ⋅ 𝕀(t = τ)τ∈[−30,30] + εt    (1) 

where 𝕀(⋅) represents the indicator function. Note that the β̂τ estimates are simply the capture rate 

τ-day relative to the pollution alert day, averaged across all 21 events.   

  Our goal is to assess whether the β̂τ’s have lower values around τ = 0, i.e., a lower capture 

rate (more missing values) near the time when a pollution alert is issued. We specify a donut 

difference-in-means estimator as our test statistic: 

                                   T =
1

7
∑ β̂ττ∈[−3,3] −

1

40
∑ β̂ττ∈[−30,−11]

∪[11,30]

                               (2) 

which is the average capture rate within a seven-day event window around the pollution alert day, 

subtracted by the average capture rate outside that window, with a seven-day buffer on each side 
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of the event window. In Appendix Figure B.5, we show that our findings are insensitive to 

alternative choices of the buffer window.17 Our identification premise is the standard zero-trend 

assumption: under the null hypothesis that the pollution alert has no impact on the capture rate, we 

should have T = 0, and, alternatively, if alerts do affect the capture rate, we expect T ≠ 0. One 

departure from the standard event study framework is that our treatment (pollution alert) reflects 

the monitoring agency’s belief about future pollution, and thus the shutdown of monitors may well 

occur before the issuance of pollution alerts. Such anticipation underlies our choice to allow the 

test statistic to capture potential change in shutdown rates several days before the actual alert day.   

 Figure 1, panel A plots the β̂τ coefficients for the JCF monitor. The graph features a clear 

drop of the monitor’s capture rate around the pollution alert day. The corresponding T estimate is 

-0.101, meaning the capture rate within the seven-day window around a pollution alert is 10.1 

percentage points lower than the outside-window average of 88 percent (an 11.5% reduction). Note 

that the largest change in the monitor’s capture rate occurs on the alert day and the day before, 

with a 28.6 percentage points reduction (a 32.5% reduction). 

 An important feature of Figure 1, panel A is that the decline in the data capture rate began 

days before the actual pollution alert day. This is a pattern that we repeatedly observe among 

“interesting” monitors. Note that pollution not only increases on the actual alert day, but that it 

tends to rise leading up to the alert-day peak. Thus, the capture rate pattern is likely a consequence 

 
17 Another potential issue with the simple difference-in-means test statistic is that it may falsely categorize monitors 

as strategic when a long-term shutdown occurs near the pollution alert day. For example, imagine an always-active 

monitor that shuts down at τ = 0 and remains inactive for a month. From equation (1), this event is associated with a 

test statistic of -7.1 percentage points. In practice, we will find that such possibility is only relevant with carbon 

monoxide (CO) monitors that often experience seasonal shutdowns (Section 4.2). We will show that a slightly 

sharpened version of the test statistic 

T = max (
1

7
∑ β̂ττ∈[−3,3] −

1

20
∑ β̂ττ∈[−30,11]  ,

1

7
∑ β̂ττ∈[−3,3] −

1

20
∑ β̂ττ∈[11,30] )  

can successfully detect strategic monitors in the presence of seasonal shutdowns, as the null hypothesis is rejected 

when the capture rate around the alert day is lower than that of both the pre-alert period and the post-alert period. 
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of forward-looking agencies changing monitoring effort in anticipation of a future high-pollution 

episode (Malani and Reif, 2015). This pattern also suggests data absences are not mechanically 

linked with alert issuances (Section 2.2), in which case one would expect to see a change in capture 

on the alert day only.  

 We are now ready to conduct inference on whether T is statistically different from zero. In 

a large-sample setting, we could implement a t-test of T = 0  via an OLS regression of 

Capture Ratet on an indicator for the seven-day window around the alert day. This approach has 

several limitations in our setting. First, it relies on the distributional assumption that the t-statistic 

of T under the null hypothesis will be normally distributed N(0,1), which may not be true in our 

finite-sample setting. Second, with a small sample, the magnitude and precision of T could be 

sensitive to specification choices. Therefore, rather than relying on distributional and specification 

assumptions, we build on the idea that, under the (sharp) null hypothesis that pollution alerts have 

no effects whatsoever on the monitor’s capture rate, variable T does not depend on whether a 

pollution alert occurs; therefore, we can generate the null distribution of T from the data by 

randomly shuffling the timing of pollution alerts. In practice, we assign 21 dates as the “placebo” 

alert days. We restrict the randomization so that the placebo day does not occur within one month 

of the true alert day. In Appendix Figure B.5, we report that our results are robust to using 

alternative randomization buffers such as 15 days or 7 days. We repeat the process 1,000 times, 

each iteration generating a placebo test statistic. We then compute a two-tail p-value of the 

observed T as the proportion of the null distribution that is more extreme (in absolute value) than 

T. Note that we employ two-tail testing, allowing T to be significant for the “wrong” sign. In 

Section 4.2, we will show this “wrong” tail provides us with an opportunity for sanity checks.   
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 Figure 1, panel B reports the inference exercise. The histogram plots the empirical null 

distribution of T across 1,000 randomization of pollution alerts. The vertical solid line marks the 

true estimate which lies outside of the 95 percent range of the null distribution, with a two-tail p-

value of 0.014. Evidence thus points to a statistically significant reduction of the JCF monitor’s 

capture rate around pollution alerts. 

 Causal Interpretation and “Strategic” Shutdowns. Before proceeding, we discuss the 

causal interpretation of the T estimate. Taken at face value, patterns of Figure 1 suggest evidence 

of selective shutdowns. That is, more missing data are occurring around pollution alerts with 

significant deterioration of air quality. Note that selective shutdown per se is an undesirable feature 

of monitoring data that is worth documenting: if missing rate is differentially higher around high-

pollution alerts, the resulting monitoring data will understate the true pollution concentration. 

Improving continuity of monitoring near these pollution events will thus increase accuracy of the 

monitoring data regardless of why such selective shutdowns were occurring. 

 But to interpret such selective shutdowns as strategic behavior – a term that implies 

intentionality – we need the assumption to hold that a local government’s expectation of bad air 

quality causes the reduction in monitor’s capture rate. In other words, the strategic interpretation 

relies on the identification assumption that there will be no changes in the monitor’s capture rate 

in the absence of pollution expectation. Here we discuss two concerns for potential violation of 

this identification assumption. 

 A first concern is selection. Equation (1) may be mis-specified if monitors’ capture rates 

and pollution alerts are both correlated with some unobserved factors. We note that the permutation 

inference should purge the influence of unobserved factors except for those that are systematically 

correlated with the timing of alert issuance. Moreover, if systemic omitted variable bias exists, it 
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likely applies broadly to many monitors. In contrast, we report in Section 4.3 that strategic 

shutdowns tend to occur in regions with higher risk of violating the clean air standards. Section 

4.3 also shows that interesting monitors are also more likely to miss monitoring during bad 

pollution years in general, not just around pollution alerts.   

We also note that we have little prior reasons to expect any “spontaneous” relationship 

between monitors’ sampling rate and socioeconomic/atmospheric conditions. As we mentioned in 

Section 2.1, monitoring techniques certified by the EPA have stringent technological standards 

and can robustly operate under various meteorological and pollution conditions. The periodic 

quality control procedures we described in Section 2.1 are also precisely designed to make sure 

monitors are functioning properly. Nevertheless, in order to assess this point more directly, we 

consider an exercise that tries to predict daily monitoring missingness using weather conditions. 

Weather is a candidate for confounding that could affect both when a monitor misses observations 

and when local agencies issue air alerts (e.g., if bad weather events influence the functioning of 

monitoring devices and, at the same time, affect polluting activities such as road traffic). For this 

confounding to occur, some function of weather must predict missing monitoring data. We train 

several flexible machine-learning (ML) models that use contemporaneous and lagged weather data 

to predict whether monitors missed planned observations.18 None of the weather-based ML models 

successfully improve upon a “null model” that predicts a region’s majority class (“not missing”). 

In fact, the models functionally ignore the weather inputs and replicate the null model – always 

 
18 Specifically, we use three different ML algorithms: (i) lasso-penalized OLS regression, (ii) lasso-penalized logistic 

regression, and (iii) random forest. The outcome for each model is a binary indicator for whether the monitor-day's 

observation is missing. The predictors include contemporaneous and lagged weather features—temperature (mean, 

minimum, and maximum), precipitation, dew point, pressure, visibility, wind speed, wind gust, and indicators for 

extreme weather events. We tune the models’ hyperparameters using 5-fold cross validation and ultimately assess 

performance on final, held out test set. The daily weather data come from NOAA's Global Summary of the Day 

(GSOD) 2005-2014. We use inverse-distance weighting to estimate each monitor-day’s weather based upon the 

monitor’s distance to each of the 4,579 NOAA weather stations in the GSOD data. 
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predicting “not missing.” This fact remains true even when we oversample missing days to control 

for missingness days’ relative infrequency. 

 A deeper concern is reverse causality. Because pollution forecasts such as the CMAQ use 

contemporaneous monitoring data as input, one might be concerned that the natural (non-strategic) 

absence of monitors’ data may interact with the issuance of pollution alerts in ways that could 

generate a reversely causal relationship between monitor shutdowns and alerts. This is unlikely 

the case. Note that if missing data occur randomly, then the distribution of missing pollution data 

should mirror that of the observed data. Thus, natural missingness should not affect forecasts or 

alert issuances. On the other hand, if the data capture rate does fall on high pollution days (but for 

reasons unrelated to pollution alerts), then one would expect a decrease in the odds of pollution 

alerts because fewer high-pollution days are being captured. This thus creates a positive 

relationship between capture rates and alerts (i.e., the lower the capture rates → the smaller 

likelihood for alert issuance) instead of a negative one that we find in the data. 

 

3.2. Simultaneous Test of All Monitors 

 We now repeat the exercise in Figure 1 with all other monitors. We make the following 

sample restrictions: First, we restrict to monitors located in counties that have issued at least two 

pollution alerts during our study period. Second, we restrict to monitors that are designated to 

sample air quality every day. For PM2.5 and PM10 monitors, this means restricting to monitors 

sampling on a “1-in-1-day” basis.19 For O3, NO2, SO2, and CO monitors, seasonal monitoring is 

 
19 Particulate pollution monitoring is often done intermittently (once every three or six days) for sites that still adopt 

manual sampling technologies. Intermittent monitoring is typically allowed by the Environmental Protection Agency 

in jurisdictions that are not in immediate danger of violating the NAAQS. We identify 1-in-1-day monitors using the 
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often practiced (e.g., ozone is often deemed a problem only during the summer months), and we 

restrict to monitor-months for which at least one day of monitoring data was available.20 Our final 

pool of tests includes 1,359 pollution monitors (including the Jersey City Firehouse monitor) for 

PM2.5, PM10, O3, NO2, SO2, and CO located in 167 counties operating between 2004 and 2015. 

We begin with a collection of null hypotheses that we test at once: 

{Hi: Monitor i′s operation schedule is not affected by pollution alerts}i=1
N  

and the corresponding mean-difference test statistics {Ti}i=1
N  analogously defined as in equation 

(1). For each monitor, we use randomization inference to obtain its two-tail p-value pi measuring 

the degree to which the observed Ti contradicts Hi. 

 We next turn to the simultaneous testing problem. At any given chosen rejection threshold 

α, the test will falsely reject the null approximately 100α% of the time. With a large number of 

hypotheses, a substantial number of monitors will be falsely considered to be “gaming.” We 

introduce several measures to approach this issue.  

First, we present the p-value histogram. By construction, the p-value histogram should 

feature a uniform distribution U(0,1) if the null hypothesis holds true (i.e., alerts have no effect on 

data availability) for every monitor i.21 In practice, the histogram of {pi}i=1
N  is potentially a mixture 

of cases where the null hypothesis is true and cases where the null is false. If enough monitors are 

gaming, one would expect a deviation from U(0,1); more specifically, the p-value histogram would 

 
Air Quality System database’s “required day count” field. We do not test lead (Pb) particulate monitors because 

virtually all lead monitors follow an intermittent monitoring schedule.   
20 Gaseous pollutant monitoring uses chemiluminescent technologies, and are by default conducted continuously. Our 

sample selection primarily reflects the fact that monitoring seasons may differ across monitors.  
21 To see this, suppose the cumulative distribution function of the test statistic T is F(t) = Pr(T < t). Consider a 

continuous and invertible F and a two-sided test p-value = 2 min{Pr(T > t) , Pr(T < t)}. Then for any p ∈ [0,1],  
Pr (p-value < p) = Pr(2 min{F(T), 1 − F(T)} < p) = Pr(min{F(T), 1 − F(T)} < p/2) = Pr(F(T) < p/2) +
Pr(1 − F(T) < p/2) = p/2 + p/2 = p. 
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exhibit an overabundance of small p-values (<0.05). Figure 2, panel A presents the p-value 

histogram. We see a clear spike in small p-values in the p<0.05 range. When test statistics are 

further partitioned into Ti ≤ 0  (“correct”-signed test statistic) and Ti > 0  (“wrong”-signed test 

statistic) groups, we find that the spike in small p-values are driven by tests with the “correct” 

signs, i.e., those with drops in the capture rate, rather than increases around pollution alerts (Figure 

2, panel B). Figure 2 also shows that significant cases tend to emerge at the smallest p-values. This 

pattern may be consistent with (a) strategic behavior being concentrated with extreme cases rather 

than a large number of monitors being “slightly” strategic, and (b) the distribution of p-values 

under the alternative hypothesis is steeply right-skewed with high statistical power (Hung, O’Neill, 

Bauer and Kohne, 1997).  

 Second, we employ the Benjamini-Hochberg procedure to control for false discovery rates 

(Benjamini and Hochberg, 1995). This method is closely related to the p-value histogram. Large 

p-values on the p-value histogram mostly represent observations from the null hypothesis, and thus 

can be used to estimate the proportion of small p-values that also come from the null hypothesis. 

More formally, we order {pi}i=1
N  in an increasing order p(1) ≤ ⋯ ≤ p(N), and for a choice of target 

false discovery rate α = 0.05, we find the largest value of k such that p(k) ≤ αk/N, and reject the 

null for i = 1, … , k. For each Ti, we also compute a q-value equals to the minimum false discovery 

rate that can be attained when Ti is considered significant (Storey, 2003; Anderson 2008). We 

follow the literature and give q-value a Bayesian posterior significance level interpretation (i.e., 

false discovery adjusted significance level). 

 In Online Appendix Figure B.6, we present a placebo exercise in which we randomly 

assign a placebo (fake) alert profile to each monitor and then replicate the main analysis steps. As 

anticipated, the distribution closely resembles U(0,1) – the theoretical distribution of p-values 
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under the null hypothesis that alerts have no effect on monitor data capture rates. In this case, the 

Benjamini and Hochberg procedure correctly indicates that there are no monitors of interest after 

adjustment for multiple comparisons (minimum false discovery rate adjusted q-value = 0.544). 

 Finally, recent applied econometrics has demoted sole reliance on p- or q-values and 

promoted weights on the degree to which the data patterns are visually compelling. In our case, 

because monitoring agencies have no incentive to pull capture rates way down (Section 2.1), one 

would expect that interesting monitors would exhibit a T-shaped response where otherwise stable 

monitoring operation shows a sharp drop just around the days of high pollution episodes. To 

operationalize this test, we aggregate the β̂τ’s estimates and compute average event study patterns 

separately for two groups: interesting monitors and other monitors. Figure 3 displays the findings. 

First, except for the case of PM10, the overabundance of small p-values is apparent for each type 

of monitor. Second, non-interesting monitors show a flat and stable operation pattern around 

pollution alerts; this suggests the average monitor is not strategically shutting down around 

pollution alerts. Third, except for the case of CO, visual evidence is strong for interesting monitors, 

with a sharp but transient drop in capture rates around pollution alert days. As we noted, the L-

shaped response for the CO monitors is likely driven by seasonal monitor shutdowns that are 

picked up by the simple difference-in-means test statistic of equation (2). In Appendix Figure B.7, 

we present results using a “sharpened” version of the test statistic with which the null hypothesis 

is rejected when the capture rate during the -3 to 3 day event window is lower than that of both the 

pre- and post-alert periods (Section 4.1). We find that this approach successfully identifies the T-

shaped pattern for CO monitors, while the event-time patterns for other pollutants remain almost 
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the same. For the rest of the paper, we choose to stick with the simpler test statistic as specified in 

equation (2).22   

 Going one step further, we manually screen the event study patterns among all interesting 

monitors, and pinpoint those with “very interesting”, T-shaped pattern. Figure 4 presents one 

example for each type of pollution monitor. Of course, this visual screening process is subjective 

and hence we do not use the “very interesting” status in any of the subsequent statistical analyses. 

We do note, however, that visual screening is likely the most directly accessible approach to 

regulators and practitioners in our context. We have made our estimation results for all monitors 

publicly available on a website. Figure 5 provides an illustration. The interactive map presents all 

tested areas, interesting monitors, very interesting monitors, and other tested monitors. For each 

monitor, we report the test statistic, the p- and q-values, and a link to the event study graph.  

 

3.3. Features of “Interesting” Monitors 

 The statistical procedure in the previous two sections generates a list of monitors whose 

patterns of missing data are consistent with strategic shutdowns. In this subsection, we present two 

exercises that document characteristics of these interesting monitors that speaks to underlying 

mechanisms. 

 Location. Table 1 tabulates total number of pollution alerts, tested monitors, interesting 

monitors, and very interesting monitors by all 54 Core Based Statistical Areas (CBSAs) in our 

 
22 Note that the patterns observed in Figure 3 are not necessarily mechanical. Due to two-sided testing, one could, in 

principle, observe an increase in capture rate around alerts for the “interesting” monitors, or an overall flat curve that 

represents a composite of dips and jumps. However, Figure 3 predominantly shows dips for the “interesting” monitors. 

It should be noted that Figure 3 is, to some extent, a repetition of Figure 2, Panel B, but it allows us to examine what 

the event-time patterns look like. 

https://www.google.com/maps/d/u/0/edit?mid=1e6vuA_OXa-QfCMrYanwkWV7XiGl50d1q&usp=sharing
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data. We find that interesting monitors tend to cluster in certain regions of the country. For example, 

among the 86 pollution monitors that we test in the Phoenix-Mesa-Scottsdale metro area in 

Arizona, 23 show up as interesting. Figure 6 maps the locations of monitors in the 14 CBSAs that 

in total house 60% of all these interesting monitors. The clustering pattern is not an artifact of 

some CBSAs simply having disproportionately more monitors. Several large metro areas we 

examined – such as Chicago-Naperville-Elgin (IL-IN-WI), Sacramento-Roseville-Arden-Arcade 

(CA), and Philadelphia-Camden-Wilmington (PA-NJ-DE-MD) – have many monitors but very 

few interesting cases. Because the statistical procedure we use to determine interesting monitors 

does not use geographic proximity as an input, the fact that interesting cases cluster in certain 

places is informative, and suggests regional government influences. 

 The clustering pattern also implies that the decision to strategically monitor is spatially 

correlated, and some of the local variation in monitors’ interesting/non-interesting status is due to 

the use of a sharp statistical decision criterion (i.e., monitor is interesting if its p-value is less than 

0.05). For example, among all non-interesting PM2.5 monitors within 20 miles of interesting PM2.5 

monitors, over 18% have permutation p-values between 0.05 and 0.15. This fraction is 7% and 3% 

for non-interesting monitors within 20-50 mile and 50-100 mile distance, respectively. Put 

differently, some non-interesting monitors in fact do exhibit strategic monitoring patterns like their 

interesting neighbors, and they would have been considered as interesting if we were to use a less 

conservative decision rule in hypothesis testing. 

 County Characteristics. A key premise of our analysis is that state and local governments 

avoid sampling high-pollution days in an effort to either avoid nonattainment status of the federal 

air quality standards (NAAQS) or, in the case of counties already in violation, to move out of 

nonattainment. We now use cross-sectional regressions to test whether being located in counties 
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currently in or with a history of NAAQS nonattainment in fact increased a monitor’s likelihood to 

operate strategically. Table 2, column 1 reports a simple linear regression of an indicator variable 

for being labeled interesting (p-value ≤ 0.05) on an indicator for the NAAQS nonattainment status 

of the county in which the monitor is located. This is a cross-sectional regression with 1,359 

underlying monitors, 11.7% of which are interesting cases. Our estimate suggests a county’s 

nonattainment is associated with a 6.6 percentage point increase (or a 6.6/11.7=56 percent increase) 

in the odds of the monitor being interesting.  In column 2, we repeat the “correct-vs-wrong sign” 

breakdown, finding that the nonattainment correlation is driven by cases with the “correct” sign 

(i.e., the capture rate decreases around pollution alerts). In column 3, we further control for several 

state-level regulatory/political characteristics including party affiliation, 23  an index for 

environmental friendliness,24  government size,25  and a proxy for corruption.26   We find that 

nonattainment is still a predominant predictor for monitor’s “interesting” status. In column 4, we 

include state fixed effects, comparing monitors within the same state but locating in attainment 

versus nonattainment counties, thus purging of the influence of any observable or unobservable 

characteristics that might differ across states. The results again indicate a robust role of 

nonattainment status. In columns 5-8, we repeat the same set of regressions now using the FDR-

adjusted significance, i.e., an indicator variable for q-value ≤ 0.05, as the dependent variable. We 

obtain similar results from these alternative specifications. 

 
23 Share of Democratic Party affiliation according to 2006 Gallup Pool. 
24 League of Conservation Voters score, which is based on state representatives’ voting records on environmental 

issues. A higher score indicates to a stronger environmental preference (Dietz et al., 2015). 
25 Government-sector (two-digit NAICS: 92) employment as a share of total employment. Data are sourced from the 

Bureau of Economic Analysis. 
26 Per capita number of federal convictions among state and local public officials. Data are sourced from the Report 

to Congress on the Activities and Operations of the Public Integrity Section (Glaeser and Saks, 2006; Leeson and 

Sobel, 2008; Grooms, 2015). 



32 
 

To further rule out the possibility that other institutional features are simultaneously 

correlated with air pollution compliance, we consider a county’s Safe Drinking Water Act (SDWA) 

violation as a “placebo correlate.” We focus on the SDWA because of its similarities with the 

NAAQS air quality regulation in two respects. First, like the NAAQS, the SDWA is also a binding 

national policy that has significantly improved water quality (e.g., Allaire, Wu, and Lall, 2018; 

Keiser, Mazumder, Molitor, and Shapiro, 2023). Second, public water systems are required to 

inform their customers in the event of a “tier-1” violation—those believed to pose immediate 

health risks. Thus, in terms of visibility and the public pressure that local governments face upon 

violation, the SDWA is comparable to the NAAQS. 

 

We use data from Allaire, Mackay, Zheng, and Lall (2019), which provides counts of 

county-level SDWA violations from 2006-2015. Over the study period, more than 53% of counties 

have incurred at least one SDWA violation. Among these violators, the average number of 

violations is 1.4 (see Appendix Figure B.8). Appendix Tables B.1 and B2 replicate the correlation 

analysis of the main paper, adding the county’s SDWA violation status (whether any violation 

occurred between 2006-2015) as an additional correlate. We find no evidence that SDWA 

violation status is associated with “interesting” monitors. In contrast, in horse-race regressions, 

NAAQS violations continue to be the strongest predictor. 

 Local agency’s strategic monitoring behavior may also depend on how costly it is to 

comply with the regulation. Recent work by Shapiro and Walker (2020) provides revealed 

preference estimates of marginal cost of pollution abatement using price information from 

pollution offset trading markets that operate in nonattainment areas. These estimates are based on 

the fact that new polluting plants that wish to operate in nonattainment areas must offset their 
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emissions by paying incumbent polluters to reduce their emissions; the price of these pollution 

offsets thus reflects the marginal pollution abatement cost in the corresponding area. We leverage 

the Shapiro-Walker estimates (for both NOx and VOC pollutants) to examine whether monitors in 

nonattainment areas facing higher marginal abatement costs are associated with a higher 

prevalence of strategic monitoring.  

 In Figure 7, panel A, we first repeat the p-value distribution analysis (Figure 2) separating 

the sample by monitors in attainment versus nonattainment areas. Consistent with the correlate 

evidence of Table 2, we find that evidence of strategic monitoring (i.e., the overabundance of small 

p-values) concentrates in nonattainment areas. We then examine monitors in nonattainment areas 

in panel B of Figure 7, restricting to 582 monitors that located in offset trading markets. Results 

show that strategic monitoring mostly manifests in areas in the middle and highest terciles of the 

offset price distribution.  

 While we have focused on the importance of nonattainment history, a monitor’s strategic 

incentive may rise as pollution levels approximate, but not yet exceed, the regulatory standards. 

Figure 8 provides evidence on the role of such nonattainment risk using PM2.5 monitors as an 

example. The chart documents the relationship between a monitor’s quarterly capture rate (number 

of days with creditable sample as a fraction of required days of sampling) and 1-unit bins of annual 

PM2.5 concentration (the “design value”) where an exceedance of 15 ug/m3 corresponds to a higher 

risk of violation. The underlying regression controls for monitor fixed effects and year fixed effects, 

so that the underlying variation comes from year-of-year changes in recorded pollution levels 

within the same monitor. Panel A reports that for interesting monitors, years with high levels of 

pollution correspond to low data capture rates. Panel B shows that for the other, non-interesting 

monitors, the capture rate is largely independent of the design value.  
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 Two important messages emerge from this analysis. First, strategic monitoring may occur 

beyond situations that involve pollution alerts. Figure 8 panel A shows that, for interesting 

monitors, capture rates are generally lower when the monitor is closer to noncompliance. Second, 

while the identification of interesting monitors is based on the specific context of pollution alerts, 

the fact that Figure 8 panel B shows precise zero response from non-interesting monitors suggest 

the detection framework is able to capture most, if not all, PM2.5 monitors that exhibit strategic 

monitoring. We will see a similar set of results in Section 5.1, where we use PM2.5 imputation data 

to show that a deviation of pollution distribution on unobserved days from observed days exists 

only among the interesting monitors.   

 

4. Regulatory Consequences  

 We now discuss potential consequences of the “interesting” (strategic) pollution monitors. 

We begin by estimating what the distribution of pollution readings would have been had 

monitoring been done on the missing days. In section 5.1, we discuss two imputation methods to 

achieve this goal – one uses simple geometric interpolation, and the other leverages remote sensing 

data and atmospheric modeling to provide pollution predictions. With the imputed data, we present 

evidence that the interesting monitors have the potential to distort air quality regulation, and such 

distortion may carry important health costs (Section 5.2). We offer some brief thoughts on the role 

of imputation tools in deterring strategic shutdowns in future regulation (Section 5.3).  
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4.1. Imputation Methods 

 The first imputation method we use is a simple and transparent prediction procedure 

known as the inverse distance weighting (IDW). The IDW builds on the idea that atmospheric 

conditions such as air pollution are often spatially correlated. The approach predicts the pollution 

in a given location as the average of readings from nearby “donor” monitors; each donor reading 

is weighted by the inverse of the donor monitor’s distance to the location of interest. Formally, at 

any given point in time, the IDW pollution imputation for a monitor x given a set of nearby donor 

monitors {xi}i=1
N  is 

x =
∑ [d(x, xi)]−1xi

N
i=1

∑ [d(x, xi)]−1N
i=1

 

where d(x, xi) is the distance between the monitor of interest and the donor monitor i. Because 

donor values that are closer to the monitor of interest are more heavily weighted, we use a liberal, 

20-mile search window for donor monitors, which allows the IDW to provide substantial coverage 

while still preserving local variations in pollution concentration. Note that IDW “imputation” can 

be done even if x is not missing, given us an opportunity to conduct in-sample validation. The 

IDW is commonly used in epidemiology and environmental economics studies to improve spatial 

coverage of data as ground monitoring of weather and pollution is often sparse (e.g., Schwartz, 

2001; Currie and Neidell, 2005). Here we adapt the same idea to the context where data are 

temporally incomplete.  

 A disadvantage of IDW is that it only works when at least one donor monitor exists within 

20-mile radius to the monitor of interest. In our data, IDW provides imputation values for 38.6% 

of missing data. Further, because strategic monitoring behavior exhibits spatial clustering (Figure 

6), one might worry the availability of donor monitors’ imputation data per se is endogenous. We 
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therefore also consider a second imputation method that relies upon machine-learned predictions 

of PM2.5 from Di et al. (2019) who provide predictions of daily PM2.5 concentrations for the 

contiguous United States on a grid of approximately 1km by 1km resolution. These predictions 

result from an ensemble of three machine-learning algorithms: a neural network, a random forest, 

and a boosted-tree model, each algorithm trained on more than 100 variables that should be 

predictive of ground-level PM2.5, including satellite-measurements of aerosol optical depth, 

simulation outputs from two chemical-transport models, meteorological data, physical variables 

like elevation, and land-use data (e.g., road density and industry). The algorithms’ predictions were 

then aggregated in an ensemble based upon a generalized additive model.27 A pro of this second 

method is that it provides imputation values for all missing observations as the atmospheric 

modeling covers all place and time; a con is that the data result from complex modeling, thus being 

relatively less transparent than simple IDW. Below we present findings using these two approaches 

side by side.  

  

4.2. Regulatory and Health Implications 

 Figure 9 presents results from the imputation exercise. Figure 9A presents data from the 

IDW method, while Figure 9B repeats the exact same exercises using the atmospheric modeling 

method.  

  There are four panels. Each panel displays three distributions: observed PM2.5 (of course, 

for when monitoring is not missing), predicted PM2.5 when monitoring is not missing, and 

predicted PM2.5 when monitoring is missing. Hence, the two dashed lines tell us how closely the 

 
27 Di et al (2019) note that the ensemble step is productive because different models dominate in different parts of the 

country. The final cross-validated R2 for the daily PM2.5 ensemble is 0.860 with an RMSE of 2.786. 
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predicted PM2.5 tracks observed PM2.5 levels, and the solid line indicates what the distribution of 

PM2.5 would have looked like had monitoring been done on the missing days.  

 Take Figure 9A, left panel that summarizes data for interesting monitors using the IDW 

method. First, we find that IDW does a reasonable job predicting actual PM2.5 when pollution 

monitoring is not missing. A simple linear regression of observed PM2.5 on predicted PM2.5 yields 

an R-squared of 0.814. Second, our prediction exercise suggests that, compared to observed PM2.5, 

the distribution of “missed” PM2.5 (solid line) features a longer right-tail. About 23.1% of the 

missing days would have shown PM2.5 exceeding 15 ug/m3 had the measurements been taken, and 

about 2.7% of the missing days would have exceeded 35 ug/m3. These fractions convert to about 

6.6 days per year of annual standard exceedance and 0.8 days per year of 24-hour standard 

exceedance. Figure 9A, right panel shows no such discrepancy between observed and missed PM2.5 

exists for non-interesting monitors. More broadly, we hope the IDW provides the regulator with a 

tractable tool to assess strategic shutdowns beyond the scope of this study. Evidence of Figure 9A 

reveals the difference in interesting monitors’ PM2.5 distributions on observed days and missed 

days. The fact that we find the same group of monitors that respond to pollution alerts also exhibit 

a distribution-wide, selective pattern in the timing of absent data, suggesting that strategic 

monitoring goes beyond just the context of pollution alerts.  

 Figure 9B shows that the same patterns replicate almost exactly using the modeling data 

method.  

 Another important feature of Figure 9 is that the distributional deviation of “missed” PM2.5 

manifests only for the interesting monitors and not for other monitors (which include non-

interesting monitors and untested monitors in counties that do not have alert programs). In other 

words, although our quasi-experimental framework detects strategic monitors using a specific 
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indicator – low levels of data capture rate around pollution alerts – these monitors turn out to the 

ones, and likely the only ones, that are generally strategic in sampling air quality. 

 Finally, we use the imputation data to provide an estimate on the health costs of strategic 

shutdowns. For example, how might the EPA assess the health risk imposed by an uncaptured 0.8 

days per year of 24-hour PM2.5 standard exceedance? We follow the idea of Sullivan and Krupnick 

(2018) and Fowlie, Rubin, and Walker (2019) to calculate the foregone health values due to 

regulation-induced air quality improvements that the county would otherwise have enjoyed 

without strategic monitoring. Our calculation is based on the following parameters: First, linking 

counts of exceedance days and county-level nonattainment history, we calculate that each 

additional day of 24-hour PM2.5 standard exceedance is correlated with a 13% increase in the odds 

of a county receiving a nonattainment designation in the following three years; this translates to a 

9.6 percentage point increase in nonattainment probability.28 Second, to translate nonattainment 

status to air quality improvement, we use a published estimate that shows nonattainment causes 

on average 1.6 ug/m3 reduction in PM2.5 levels in the county per year for the 10 years following 

the designation (Sanders, Barreca, and Neidell, 2020). Third, to associate air quality improvement 

to mortality consequence, we use an epidemiology study that commonly cited by the EPA that 

each 10 ug/m3 reduction in PM2.5 is associated with 6% reduction in all-cause adult mortality rates 

(Krewski et al., 2009). Finally, to convert rate changes to level changes, we use data from the 

Centers for Disease Control and Prevention (CDC) to calculate that the average county’s baseline 

mortality rate in our sample is 671 per 100,000 people, and the average county’s population count 

 
28 Specifically, we regress a dummy variable for whether the monitor’s county receives a nonattainment status with 

respect to the 24-hour PM2.5 standard in the following three years (including this year) on the monitor’s number of 

standard-exceeding days this year. Note that a one-day observation of 24-hour standard exceedance (over 35 ug/m3 

on any given day) does not immediately trigger a county’s nonattainment, a status that is determined by three-year 

moving averages of annual 98th percentile values. Our calculation yields very similar conclusion when considering 

the forgone health value of 6.6 days per year of annual standard exceedance. 
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during the study period is 1.55 million. When multiplied together, these numbers indicate about 

7.6 avoidable deaths per interesting monitor per year. Assuming a $8.9 million Value of Statistical 

Life (2020 USD) commonly used by the EPA in regulatory impact analyses, these avoidable deaths 

amount to an annual foregone health value of $67.4 million per interesting monitor. 

 

4.3. Potential Deterrence 

 One implementable solution to the strategic shutdown problem is for federal regulators to 

change their practices regarding missing data. Rather than effectively ignoring the absence of data, 

regulators could use estimates to approximate conditions that prevailed during down times. Similar 

approaches have successfully been used in other pollution regulations. For example, one can learn 

from the successful enforcement experience of the EPA’s Acid Rain Program (ARP), a cap-and-

trade program based on a monetary system of tradeable emission allowances. All emission sources 

in the ARP – mostly in the power-generating sector – are required to monitor emissions in real 

time through a continuous emission monitoring systems (CEMS). To incentivize monitoring 

compliance, the ARP specifies stringent data substitution procedures when approved CEMS 

technology is not used. For example, when the hourly capture rate of SO2 emissions falls below 

90%, the substitute data value will be the maximum value observed by looking back through the 

last 720 hours. The ultra-conservative approach to substitute for missing data is believed to underly 

the ARP’s near-perfect compliance record (Schakenbach, Vollaro, and Forte, 2006).29 The ARP’s 

zero-tolerance approach is obviously very conservative; but it does highlight the importance of 

 
29 See also statistics from here <https://www.epa.gov/airmarkets/monitoring-insights>. Recent data from 2015-2019 

suggests CEMS capture rate is about 99.4%. We are thankful to Dr. Jeremy Schreifels at the U.S. EPA for pointing us 

to these data. 

https://www.epa.gov/airmarkets/monitoring-insights
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substituting for missing data – rather than ignoring missing data – in maintaining monitoring 

compliance. We conjecture that the type of data imputation methods we described, though 

imperfect, may act as a trigger for regulatory investigation, and may thus serve as reasonable 

deterrence to strategic shutdowns. 

 

5. Summary and Conclusion 

 This paper presents a framework to make individual-level inference about strategic 

monitoring behavior. Before concluding, we provide a high-level summary of our analysis steps 

to reiterate the main ideas. 

 

5.1. Summary 

Step 1. The anecdote. Why should one be concerned about strategic shutdowns of 

monitors in the first place? The behavior of the Jersey City Firehouse (JCF) monitor during the 

2013 Bridgegate traffic jam serves as a motivation: Such behavior might exist, has garnered public 

attention, but lacks a sophisticated statistical investigation.  

Step 2. A framework that defines “interesting” monitors that behave like JCF. We 

propose a straightforward framework to identify whether a monitor exhibits similar shutdowns, 

applying it first to the JCF monitor, then to all others. This framework consists of a decision rule 

with two components: 

First, a test statistic: the difference in the monitor’s data capture rate around county 

government pollution alerts relative to further away periods before and after the alerts; 
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Second, a p-value of the test statistic: the position of the observed test statistic against the 

empirical distribution of the test statistic under the null hypothesis (of no strategic shutdowns), 

derived through standard randomization inference procedure. In other words, this step tells us 

whether the shutdown patterns of the monitor around alerts significantly deviate from its “typical” 

data capturing behavior during non-alert periods.  

Note that Step 2 establishes criteria for the empirical “interestingness” of a monitor. The 

analysis has not yet provided evidence that these criteria effectively isolate genuinely strategic 

monitors, rather than capturing confounders or other statistical artifacts – this verification is the 

core objective of Step 3.  

Step 3. Are statistically “interesting” monitors really strategic? This constitutes the 

main body of the research. We perform a series of validation and falsification tests that provide 

statistical and economic reasons to believe that monitors identified as “interesting” are indeed 

behaving strategically.  

First, the p-curve (Figure 2, panel A). This initial test is purely statistical. Testing over 

1,300 monitors across the country means some will statistically stand out due to false discovery. 

Figure 2, Panel A addresses this issue by tabulating the distribution of all monitors’ p-values to 

see if there is an excess of small p-values. The Benjamini and Hochberg (1995) q-values approach 

is a formal application of this visual test.  

Second, correct- vs. wrong-signed estimates (Figure 2, panel B and Figure 3). We extend 

the p-curve test, exploiting the fact that when we construct the test statistic and inference, we did 

not constraint it to be one-sided. Thus, if a monitor’s data capturing rate shows a significant 

increase around pollution alerts, it could be labeled as “interesting” by our framework – although 

for the wrong reason, because economically we have no reason to expect that monitors will 
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increase monitoring diligence during pollution alerts. Reassuringly, Figure 2, panel B shows the 

overabundance of small p-values are indeed driven by correct-signed estimates (“dips”), not 

wrong-signed ones (“jumps”). Figure 3 further illustrates this, showing clear dips in data capture 

among “interesting” monitors.  

Third, correlation with incentives (Table 2). Do the monitors we define as “interesting” 

actually have the incentives to behave strategically? Table 2 shows that “interesting” monitors are 

strongly associated with nonattainment with respect to the National Ambient Air Quality Standards 

(NAAQS). Compliance monitoring with respect to NAAQS is precisely why monitors are set up 

in the first place. We further use Safe Drinking Water Act violation as a “placebo correlate” and 

show that water violation status does not predict “interesting” air monitors.  

Fourth, validation using independent data (Figures 8 and 9). Our fourth and final category 

of tests involves cross-checks with independent data that are not used in identifying “interesting” 

monitors. Figure 8 shows that for “interesting” monitors, there is a strong, negative correspondence 

between the recorded pollution level that year and the monitor’s average data capture rate. Such a 

relationship is not observed for non-interesting monitors. Figure 9 uses both geographic and 

remote-sensing imputation methods to show that, for “interesting” monitors, if monitoring had 

occurred on the missing days, higher pollution levels would have been recorded. This pattern is 

not observed for non-interesting monitors. 

Step 4. Policy implications. A major benefit of our framework is the ability to provide a 

list of individual monitors likely acting strategically, offering useful information for policymakers. 
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5.2. Conclusion 

We investigate the operating patterns of air quality monitors in the U.S. using a framework 

that we create to test for evidence of shutdowns that are strategically timed to avoid periods when 

forecasts predict high levels of pollution. We identify clusters of monitors in at least 14 

metropolitan areas whose patterns of operation show strong evidence of the use of such strategic 

timing and, thus, warrant further regulatory attention. (We make the list of these monitors available 

at a public website.) Our findings show that the monitors that display such operating patterns are 

predominantly located in federal nonattainment areas that face the likelihood of costly penalties 

for violations of US Clean Air Act standards.  

Our work suggests that current regulatory practices that ignore gaps in compliance-

monitoring data collection may incentivize strategic changes in local agencies’ monitoring 

diligence. We propose two key ways to deter such behavior: detection and incentives. The 

statistical framework we have devised could detect monitors that show a pattern of skipping high-

pollution days. We also suggest ways to disincentivize the use of strategic shutdowns. Regulators 

could consider revising the current practice of ignoring missing data when they determine 

compliance. For example, inverse distance weighting, a method used successfully by the research 

community, is one possible solution to provide imputed values. Imputation methods are imperfect, 

but their output may act as a trigger for regulatory investigation, and may thus serve as reasonable 

deterrence to strategic shutdowns.  

 We believe that concrete evidence can help level the playing field for environmental 

regulations, improve accuracy of air quality data, and motivate better design of monitoring and 

enforcement schemes in the future to better achieve the wider aims of improved public health from 

having less-polluted air. More broadly, we hope that the new possibilities made possible by large-



44 
 

scale inference tools can extend to other research contexts where the detection of a small group of 

units that evidence distinct patterns (among a sea of nulls) is important.   
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Figure 1. Monitor’s Sampling Behavior near Pollution Alerts: Jersey City Firehouse PM2.5 Monitor
Panel A. Event study of monitor’s capture rate
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Notes: Panel A plots JCF monitor’s average capture rate (i.e., one minus a dummy for missing data) as a function of days since pollution
alerts issued by the Jersey City. Number of alerts = 21. Dashed line represents three-day moving average of point estimates. Panel
B plots the distribution of the test statistics derived from 5,000 randomly assigned pollution alerts. Test statistic equals the difference
between mean capture rates across event days [-3,3] and mean capture rates across event days [-30,-10]∪[10,30]. Solid vertical line is the
observed (i.e., true) test statistic. Dashed vertical lines show 95% range of the randomized test statistics.
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Figure 2. Distribution of p-values, All Monitors
Panel A. Overall
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Notes: Panel A shows the distribution of p-values for all monitors. Test statistic equals the difference between mean capture rates across
event days [-3,3] and mean capture rates across event days [-30,-10]∪[10,30]. Panel B shows the breakdown by the sign of the estimated
effect. Hollow bars show p-values for negative estimates (i.e., monitoring capture decreases around pollution alerts), and shaded bars
show p-values for positive estimates (i.e., monitoring capture increases around pollution alerts). Horizontal dashed lines show the uniform
distribution.

55



Figure 3. Capture Rate for “Interesting” Monitors (△) and Other Monitors (◯)
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Notes: This graph shows mean monitoring capture rate for “interesting” monitors (those with p−value<0.05) and other monitors. Data
are demeaned by the average capture rate across the first ten event days. Fitted lines show three-day moving averages of point estimates.
Each panel corresponds to one pollutant. Histograms show the distributions of p−values for the corresponding pollutant monitors.
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Figure 4. Examples of “Very Interesting” Monitors
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Notes: This graph shows monitor’s capture rate for some example “very interesting” monitors (those with p−value<0.05 and compelling
visual pattern). Data are demeaned by the average capture rate across the first ten event days. Fitted lines show three-day moving
averages of point estimates. Each panel corresponds to one pollutant. “#alerts” is total number of city’s pollution alerts used in the
event study. “q-value” is the False Discovery Rate adjusted significance level (Anderson, 2008).
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Figure 5. Study Website: Estimation Results for All Monitors

Notes: We store full estimation results at this website. Shaded areas highlight study regions. Click on each monitor to view estimation
details.
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Figure 6. Locations of All Tested Monitors (◯), “Interesting” Monitors (△), and “Very Interesting” Monitors (☆)

Notes: Blue shades indicate 14 CBSAs that together house 60% of all “interesting” monitors. Left panel: Bakersfield, CA; Fresno, CA; Hanford-Corcoran, CA; Los
Angeles-Long Beach-Anaheim, CA. Right panel: Phoenix-Mesa-Scottsdale, AZ; El Paso, TX.
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Figure 6 (Cont.). Locations of All Tested Monitors (◯), “Interesting” Monitors (△), and “Very Interesting” Monitors (☆)

Notes: Blue shades indicate 14 CBSAs that together house 60% of all “interesting” monitors. Beaumont-Port Arthur, TX; Houston-The Woodlands-Sugar Land, TX.
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Figure 6 (Cont.). Locations of All Tested Monitors (◯), “Interesting” Monitors (△), and “Very Interesting” Monitors (☆)

Notes: Blue shades indicate 14 CBSAs that together house 60% of all “interesting” monitors. Left panel: Salt Lake City, UT; Denver-Aurora-Lakewood, CO. Right panel:
Louisville/Jefferson County, KY-IN; Memphis, TN-MS-AR.
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Figure 6 (Cont.). Locations of All Tested Monitors (◯), “Interesting” Monitors (△), and “Very Interesting” Monitors (☆)

Notes: Left panel: Pittsburgh, PA. Right panel: New York-Newark-Jersey City, NY-NJ-PA.
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Figure 7. Distribution of p-values, by Regulatory Status and Pollution Abatement Costs
A. By non-attainment status
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B. Non-attainment areas, by marginal abatement cost (Shapiro and Walker, 2020)
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Notes: Panel A shows the breakdown of the distribution of p-values by whether the county has ever been in NAAQS non-attainment
throughout the study period. Panel B restricts to 582 that located in offset trading markets as documented in Shapiro and Walker (2020),
and shows the breakdown of the distribution of p-values by deciles of NOx and VOC emission offset prices. In both panels, horizontal
dashed lines show the uniform distribution.
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Figure 8. Quarterly Capture Rate vs. Annual PM2.5 Design Value

A. “Interesting” monitors
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Notes: This figure reports regression of a monitor’s quarterly capture rate (valid sampling days divided by required sampling days in a
quarter) on 1-ug/m3 bins of annual mean PM2.5 concentration (i.e., design values for the PM2.5 annual standard). The “< 8 ug/m3”
bin is the omitted category. The regression controls for monitor fixed effects and year fixed effects. The regression is run separately for
“interesting” monitors (panel A, number of observations = 300) and other monitors (panel B, number of observations = 7,688).
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Figure 9. Distributions of Observed and Imputed PM2.5 Concentration

A. Imputation method: inverse distance weighting (IDW)

B. Imputation method: atmospheric modeling (Di et al., 2019)

Notes: Underlying data are monitor-daily level average PM2.5 concentration. “Observed value” is concentration recorded on the monitor-
day. In panel A, “Predicted value” is inverse distance-weighted concentration from all other operative PM2.5 monitors within a 20-mile
radius. In panel B, “Predicted value” is from 1 km × 1 km grid-daily prediction of PM2.5 from atmospheric ensemble-based modeling (
Di et al., 2019) which incorporates satellite observations. “Long-term standard” marks the 15 ug/m3 annual NAAQS standard. “Short-
term standard” marks the 35 ug/m3 24-hr NAAQS standard.
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Table 1. List of CBSAs, Ranked by Cases of “Interesting” Monitors (△)
CBSA #alerts ◯ △ ☆

Phoenix-Mesa-Scottsdale, AZ 51 86 23 4
Houston-The Woodlands-Sugar Land, TX 199 49 12 0
Denver-Aurora-Lakewood, CO 30 21 6 1
Fresno, CA 83 32 6 4
Salt Lake City, UT 66 21 5 1
Hanford-Corcoran, CA 66 9 5 1
New York-Newark-Jersey City, NY-NJ-PA 30 33 5 1
Memphis, TN-MS-AR 18 13 4 0
El Paso, TX 44 30 4 1
Los Angeles-Long Beach-Anaheim, CA 22 72 4 0
Beaumont-Port Arthur, TX 45 19 4 1
Pittsburgh, PA 64 29 4 1
Louisville/Jefferson County, KY-IN 27 18 4 0
Bakersfield, CA 71 29 4 1
San Luis Obispo-Paso Robles-Arroyo Grande, CA 17 16 3 1
San Jose-Sunnyvale-Santa Clara, CA 18 11 3 1
San Francisco-Oakland-Hayward, CA 32 57 3 0
Cleveland-Elyria, OH 50 15 3 0
Boston-Cambridge-Newton, MA-NH 19 27 3 1
Bridgeport-Stamford-Norwalk, CT 40 10 3 1
Knoxville, TN 50 7 2 0
Dallas-Fort Worth-Arlington, TX 78 11 2 0
Modesto, CA 82 10 2 0
Grand Rapids-Wyoming, MI 10 5 2 0
Madera, CA 45 9 2 1
Visalia-Porterville, CA 91 7 2 0
Detroit-Warren-Dearborn, MI 15 31 2 0
Philadelphia-Camden-Wilmington, PA-NJ-DE-MD 24 51 2 0
Riverside-San Bernardino-Ontario, CA 21 77 2 0
New Haven-Milford, CT 35 9 2 2
Austin-Round Rock, TX 28 6 2 0
Raleigh, NC 22 7 2 0
Manchester-Nashua, NH 11 9 2 0
Vernal, UT 14 9 2 0
Sacramento–Roseville–Arden-Arcade, CA 22 50 2 1
Columbus, OH 28 8 2 1
Atlanta-Sandy Springs-Roswell, GA 60 8 2 0
Kingsport-Bristol-Bristol, TN-VA 35 4 1 0
Chicago-Naperville-Elgin, IL-IN-WI 25 29 1 0
Lawton, OK 3 1 1 0
Buffalo-Cheektowaga-Niagara Falls, NY 25 10 1 0
Dayton, OH 37 3 1 0
Birmingham-Hoover, AL 63 14 1 0
San Antonio-New Braunfels, TX 13 13 1 0
Washington-Arlington-Alexandria, DC-VA-MD-WV 3 19 1 0
Springfield, MA 36 7 1 1
Jamestown-Dunkirk-Fredonia, NY 33 2 1 1
Providence-Warwick, RI-MA 9 13 1 0
Dover, DE 14 1 1 0
Yuba City, CA 4 3 1 0
Gulfport-Biloxi-Pascagoula, MS 4 5 1 0
Vallejo-Fairfield, CA 51 11 1 1
Provo-Orem, UT 101 9 1 1
Youngstown-Warren-Boardman, OH-PA 6 4 1 0

Notes: #alerts = number of alerts issued during the study period. ◯ = number of tested monitors. Our paper tests a total of 1,359
monitors. This table includes 1,059 monitors are located in one of the CBSAs listed above; △ = number of “interesting” monitors; ☆
= number of “very interesting” monitors.
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Table 2. Correlates of “Interesting” Monitors
(1) (2) (3) (4) (5) (6) (7) (8)

Dep. var.: 1(p-value ≤ 0.05) 1(q-value ≤ 0.05)

Non-attainment 0.066** 0.039*
(0.030) (0.021)

Non-attainment × 1(“wrong” sign) -0.014 0.011 -0.001 -0.002 0.012 0.022
(0.033) (0.034) (0.041) (0.024) (0.024) (0.030)

Non-attainment × 1(“correct” sign) 0.203*** 0.220*** 0.223*** 0.111*** 0.124*** 0.129***
(0.055) (0.055) (0.061) (0.039) (0.039) (0.044)

Above median Democrats -0.022 -0.014
(0.027) (0.019)

Above median LCV score -0.023 -0.021
(0.027) (0.019)

Above median government size 0.007 -0.001
(0.017) (0.012)

Above median corruption 0.035* 0.008
(0.018) (0.013)

State fixed effects ✓ ✓

Mean dep. var. 0.117 0.117 0.117 0.117 0.052 0.052 0.052 0.052
Observations 1,359 1,359 1,359 1,359 1,359 1,359 1,359 1,359

Notes: Each column is a separate regression. Underlying data is a cross-section of monitors matched to parenting county’s characteristics.
Dependent variable is an indicator for whether the monitor’s p−value is less than 0.05 (columns 1-4), or an indicator for whether the
monitor’s FDR-adjusted significance q−value is less than 0.05 (columns 5-8) where the family of tests is all 1,359 monitors. “Non-
attainment” is an indicator for whether the county has ever been in NAAQS non-attainment throughout the study period. “1(“correct”
sign)” indicates a negative effect sign, i.e., capture rate drops near pollution alerts. “Above median”’s indicate the county has an
above-median level of share of Democrats affiliation (2006 Gallup Poll), League of Conservation Voters score, share of government-sector
employees (Bureau of Economic Analysis, NAICS=92), and per-capita number of federal convictions among state and local public officials
(Glaeser and Saks, 2006). *: p < 0.10; **: p < 0.05; ***: p < 0.01.
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Appendix A. A Model of Strategic Self-Monitoring

1. Model Setup

We consider a setting in which a federal regulator sets a standard for pollution, and a regulated entity

generates monitoring data to document its level of compliance with the standard. The regulated entity –

the monitor henceforth – has private information about its compliance (e.g., the local level of pollution).

Suppose there are N days in a sample period of which nv ∈ (0, N) days violate the regulator’s standard.

The remaining nc = N −nv days comply with the standard.

For simplicity, we assume the monitor has full information about all N realizations – i.e., whether each

day violates or complies with the standard – and it chooses which observations to reveal to the regulator.

In reality, depending on the context, the monitor may act upon its expectations, for instance, through

pollution forecasting. The monitor generates data for rv (≤ nv) violating observations and rc (≤ nc)

compliant observations. Let each reported observation cost the monitor c to generate, so that the total

cost of monitoring is c× (rv + rc).

Based on the reports rv and rc, the regulator imposes two kinds of penalties on the monitor. First,

the regulator charges the monitor a fine of pv(rv) for the violating days. Second, there is a penalty for

missing observations pm(N − rv − rc). The monitor’s reporting problem is thus choosing rv and rc that

minimizes the total loss

min
rv,rc

C = pv(rv)+ pm(N − rv − rc)+ c× (rv + rc) s.t. 0 ≤ rv ≤ nv and 0 ≤ rc ≤ nc

We assume that c > 0 and that both penalty functions are increasing (p′v > 0 and p′m > 0) and convex

in shape (p′′v > 0 and p′′m > 0). The convexity assumption approximates the reality where often some

degree of violations or missingness are tolerated, while large number of violations and missing data are

heavily penalized. We now characterize monitor’s reporting behavior depending on the properties of

pv(·), pm(·) and c.

Proposition 1. The monitor reports r∗v = 0 and nc > r∗c > 0 when it is feasible to find r∗c such that

p′m(N − r∗c) = c.

That is, the monitor reports no violations and some (but not all) compliant observations whenever it

is feasible to strike a balance between the marginal penalty for missing data and the cost of monitoring.

Note that the behavior characterized in Proposition 1 will become infeasible when violating days are

numerous, so that reporting only compliant days will incur large penalty for missing data. (This scenario

also depends upon the convexity of pm, e.g., if p′m(nv) > c, then the monitor will report violations.) In

these cases, one would expect to observe reporting behavior characterized by the following proposition:

Proposition 2. The monitor reports nv > r∗v > 0 and nc = r∗c when p′m(nv − r∗v) ≥ c, where r∗v is

determined by p′m(nv − r∗v) = p′v(r
∗
v)+ c.

That is, the monitor reports all compliant observations plus some (but not all) violations when the
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penalty for missing observations is sufficiently large relative to monitoring cost. Together, Propositions 1

and 2 suggest that, because compliant observations carry a lower penalty than violations, the monitor will

report some (and perhaps all) compliant days. Only when the penalty for missing data is sufficiently large

does the monitor report violations (due to many violating days or a highly convex penalty for missed

observations pm). In this case, the monitor reports all compliant days and reports violation up to the point

where the marginal penalty for missing data equals the marginal cost of monitoring plus the marginal

fine of an additional reported violation. Importantly, in our stylized model, monitor will not choose any

solution such that nv > r∗v > 0 and nc > r∗c > 0 – that is, the monitor will not report violating observations

before they “use up” all their compliant observations – as long as the marginal damage of reporting

violation is positive p′v(r
∗
v)> 0.

Finally, we show that even if a monitor is at a point where it has to reveal violating days, it will not

report all of its violating days unless the penalty for missing data is overwhelmingly large:

Proposition 3. Monitor will not report r∗v = nv and r∗c = nc unless p′m(0)≥ c+ p′v(nv).

The condition of Proposition 3 says that complete reporting only occurs when the marginal cost of

missing any observations must overwhelm marginal operating costs and the marginal regulatory fines

when all violations are reported. Unless the true data have very few violations (nv ≈ 0), the assumed

convexity of pv and pm functions likely rules out this possibility. In paragraph 3 below, we provide the

full proof of the propositions and discuss all other boundary possibilities.

2. Implications for Empirical Analysis

We now describe the mapping between the theoretical propositions and our empirical analysis. Our

stylized model offers two general corollaries. A first corollary is on the existence of strategic monitoring:

the federal regulator in our model cannot expect complete and/or unbiased reporting. It is almost always

the case that violating days are undersampled relative to compliant days: rv/nv < rc/nc. In other words,

the reported monitoring data are biased toward compliance.

The main empirical tests for the existence of strategic monitors are presented in Sections 4.1 and 4.2.

In Section 4.1, we propose an event study test of strategic monitoring behavior which examines whether

a monitor shuts down more frequently during pollution alerts. In Section 4.2, we scale up this test and

propose inference steps to identify a set of strategic (“interesting”) monitors across the country.

The advantage of the event study design of Sections 4.1 and 4.2 is that it provides a “sharp” method to

tease out strategic monitoring shutdown from spontaneous missingness. A drawback of this method is that

it may only identify strategic monitoring behavior in a specific setting, i.e., monitor shutdowns around

pollution alerts. In practice, not all monitors reside in counties that operate pollution alert programs;

local agencies may also form expectations on future pollution based on other information sources other

than pollution forecasting. In Sections 5.1 and 5.2, we provide complementary evidence which shows

the quasi-experimental framework we propose in Sections 4.1 and 4.2, though focusing on specific

setting of pollution alerts, is likely sufficient to identify most strategic monitors. To do this, we use
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geospatial imputation and atmospheric modeling approaches to provide predicted value for one of the

primary air pollutants: fine particulate matter (PM2.5). We then compare the distribution of PM2.5

values on missing days and non-missing days. Evidence suggests that the distributional deviation of

“missed” PM2.5 manifests only for the interesting monitors and not for other monitors (non-interesting

monitors and untested monitors in counties that do not have alert programs). In other words, although our

quasi-experimental framework detects strategic monitors using a specific indicator – low levels of data

capture rate around pollution alerts – these monitors turn out to the ones, and likely the only ones, that

are generally strategic in sampling air quality.

The second corollary of our stylized model involves the heterogeneity of strategic monitoring: for a

monitor that has very few violating days to begin with (nv ≈ 0), the marginal fine for reporting violating

days is sufficiently small that the reporting problem becomes less strategic in nature and instead reduces

to a simple tradeoff between non-reporting costs and the operating cost. Our empirical analysis tests

this prediction by examining whether monitors at lower risk of violating the regulatory standards are

less likely to exhibit strategic monitoring. We present heterogeneity analysis in Section 4.3, in which

we correlate a monitor’s “interesting” / “non-interesting” status with the history of NAAQS regulatory

violation and measures of pollution abatement costs from the existing literature.

3. Proof of Propositions

Minimizing costs

Backsolving, the monitor chooses rv and rc (assumed continuous) that minimize the sum of its penalties

pv(rv)+ pm(N − rv − rc) and costs c× (rv + rc). Thus, the monitor’s problem is

min
rv,rc

C = pv(rv)+ pm(N − rv − rc)+ c× (rv + rc) s.t. 0 ≤ rv ≤ nv and 0 ≤ rc ≤ nc (A)

Flipping equation A to a constrained maximization problem,

max
rv,rc

L =−pv(rv)− pm(N − rv − rc)− c× (rv + rc)+λ1(nv − rv)+λ2(nc − rc)+λ3rv +λ4rc (B)
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First-order conditions

The Karesh-Kuhn-Tucker (KKT) conditions for equation B imply ten first-order conditions:

∂L

∂ rv
=−p′v + p′m − c+λ1 +λ3 = 0 (L1)

∂L

∂ rc
= p′m − c+λ2 +λ4 = 0 (L2)

∂L

∂λ1
= nv − rv ≥ 0 (L3)

∂L

∂λ2
= nc − rc ≥ 0 (L4)

∂L

∂λ3
= rv ≥ 0 (L5)

∂L

∂λ4
= rc ≥ 0 (L6)

∂L

∂λ1
λ1 = (nv − rv)λ1 = 0 (L7)

∂L

∂λ2
λ2 = (nc − rc)λ2 = 0 (L8)

∂L

∂λ3
λ3 = (rv)λ3 = 0 (L9)

∂L

∂λ4
λ4 = (rc)λ4 = 0 (L10)

To consider the the feasible equilibria implied by this model, we examine four general cases:

1. No reporting: rv = 0 and rc = 0

2. No reporting of violations: rc > rv = 0

3. No reporting of compliance: rv > rc = 0

4. Non-zero reporting of violations and compliance: rv > 0 and rc > 0

Note that complete, honest reporting is a special subcase of case 4.

Case 1: No reporting (rv = 0 and rc = 0)

In this scenario, KKT first-order conditions L3–L6, L9, and L10 are automatically satisfied. Because

L3 and L4 are satisfied with inequalities, satisfying L7 and L8 requires λ1 = 0 and λ2 = 0 (respectively).

Thus, L1 becomes

−p′v(0)+ p′m(N)− c+λ3 = 0

=⇒ λ3 = p′v(0)− p′m(N)+ c ≥ 0

=⇒ p′v(0)+ c ≥ p′m(N)
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Similarly, L2 becomes

pm(N)′− c+λ4 = 0

=⇒ λ4 =−p′m(N)+ c ≥ 0

=⇒ c ≥ p′m(N)

Therefore, in order for λ4 ≥ 0 and for this case to be feasible, it must be true that c ≥ p′m(N). In

other words, when the marginal costs of monitoring/reporting are greater than the marginal penalty for

missingness when all observations are missing, then the monitor will not report any observations—neither

compliance, nor violations. (The costs or reporting exceed the fines of not reporting—even at extreme

non-reporting.) This case is really only feasible when monitoring costs are very large or when regulators

impose essentially no penalties for missing observations.

Case 2: No reporting of violations (rc > rv = 0)

Here, rv = 0 satisfies L3 with inequality, so λ1 = 0 to satisfy L7. rv = 0 satisfies L5 with equality, so

L9 is also satisfied. rc > rv = 0 satisfies L6 with inequality, so λ4 = 0 to satisfy L10. We now break this

case into two subcases: rc = nc or rc < nc.

Subcase 2a: rc = nc and rv = 0 In this subcase, rc = nc satisfies L4 with equality which also satisfies

L8. Thus, L1 becomes

−p′v(0)+ p′m(nv)− c+λ3 = 0

=⇒ λ3 = p′v(0)− p′m(nv)+ c ≥ 0

=⇒ p′v(0)+ c ≥ p′m(nv)

Similarly, L2 becomes

pm(nv)
′− c−λ2 = 0

=⇒ λ2 = p′m(nv)− c ≥ 0

=⇒ p′m(nv)≥ c

The two inequalities implied by KKT conditions L3 and L4 may apply in some cases but are also

likely to be violated in other situations. The requirement that follows from KKT condition L3—namely

p′v(0)− p′m(nv)+ c ≥ 0—requires that the marginal penalty for violations moving from zero violations

plus the marginal cost of monitoring is greater than the marginal penalty for missingness at nv. Because

many settings involve fairly light penalties for small numbers of violations, p′v(0) may often be quite

small (possibly near zero).

If p′v(0) is indeed negligible, then these two inequalities nearly rule each other out: if the marginal

cost of monitor exceeds the marginal penalty for missingness (at nv), then L1 is satisfied but L2 is
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violated (and vice versa). When p′m(nv) > c (sufficiently steep penalization for missingness near nv—

either aggressive penalties or many violations) and when p′v(0) (sufficiently steep penalization for the

first violations) that this subcase is feasible.

We note that, in the case of AQS monitors, p′v(0) and c are both quite small; p′m(nv) is likely suffi-

ciently large to make this case infeasible.

Subcase 2b: nc > rc > 0 and rv = 0 In this subcase, rc < nc satisfies L4 with inequality, so λ2 = 0 to

satisfy L8. Thus, L2 implies

p′m(N − rc) = c

Therefore, L1 becomes

−p′v(0)+ p′m(N − rc)− c+λ3 = 0

=⇒ λ3 = p′v(0)≥ 0

This subcase—no reporting of violations and imperfect reporting of compliance—is feasible for many

settings.

Subcase 3: No reporting of compliance (rv > rc = 0)

It is straightforward that this subcase would be infeasible: there are more penalties for reporting violations

than compliance. rc = 0 satisfies L4 with inequality, implying λ2 = 0 to satisfy L8. rc = 0 satisfies L6

and L10 with equality. rv > 0 satisfies L5 with inequality, implying λ3 = 0 to satisfy L9. As before, let

us break this case into two subcases: rv = nv and rv < nv.

Case 3a: rv = nv and rc = 0 Here, rv = nv satisfies L3 and L7 with equality. Therefore, L1 becomes

−p′v(nv)+ p′m(nc)− c−λ1 = 0

=⇒ λ1 = p′v(nv)− p′m(nc)+ c ≥ 0

=⇒ p′v(nv)+ c ≥ p′m(nc)

And L2 becomes

p′m(nc)− c+λ4 = 0

=⇒ λ4 = c− p′m(nc)≥ 0

=⇒ c ≥ p′m(nc)

This second requirement, i.e., c ≥ p′m(nc), is likely infeasible in most settings, where compliance

is at least as common as violations. In such settings, one might expect that when half of the planned
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observations are missing, the marginal penalty levied for another missing observation would exceed the

marginal cost of monitoring.

The first inequality (p′v(nv)+ c ≥ p′m(nc)) is satisfied when the second is. Further, this case is infeasi-

ble as it is dominated by reporting compliance. Consider the scenario where the monitor would report r∗

violations and 0 compliant observations. Now switch to r∗ compliant violations and 0 violations.(Or as

many compliant observations as possible before nc binds and then fill in with reports of violations.) Both

scenarios generate the same costs and the same penalties for missingness. However, the r∗ violations gen-

erate a violations-based penalty of pv(r∗), while the scenarios with r∗ compliant observations generates

zero penalty. Thus, reporting r∗ compliant observations dominates reporting r∗ violation observations. In

other words: This subcase is infeasible.

Subcase 3b: nv > rv > 0 and rc = 0 Here, rv < nv satisfies L3 with inequality, requiring λ1 = 0 to

satisfy L7. Consequently, L1 becomes

−p′v(rv)+ p′m(N − rv)− c = 0

And, L2 becomes

p′m(N − rv)− c+λ4 = 0

Jointly, these two conditions imply λ4 = −p′v(rv), which is infeasible, as it implies λ4 < 0. Recall

that we assume p′v > 0 (i.e., strictly increasing penalties for violations). This subcase is infeasible.

Case 4: Non-zero reporting of violations and compliance (rv > 0 and rc > 0)

In this case, rv > 0 satisfies L5 with inequality, implying λ3 = 0 to satisfy L9. rc > 0 satisfies L6 with

inequality, implying λ4 = 0 to satisfy L10. We now break this case into four subcases based upon whether

rv < nv or rv = nv and whether rc < nc or rc = nc.

Subcase 4a: rv = nv(> 0) rc = nc(> 0) Here, rv = nv satisfies L3 and L7 with equality. rc = nc satisfies

L4 and L8 with equality. L1 becomes

−p′v(nv)+ p′m(0)− c−λ1 = 0

=⇒ λ1 =−p′v(nv)+ p′m(0)− c ≥ 0

=⇒ p′m(0)≥ c+ p′v(nv)
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L2 becomes

p′m(0)− c−λ2 = 0

=⇒ λ2 = p′m(0)− c ≥ 0

=⇒ p′m(0)≥ c

The inequality implied by L1, i.e., p′m(0) ≥ c+ p′v(nv), requires that the marginal penalty for miss-

ingness at zero missing observations is larger than the sum of marginal monitoring costs and the marginal

penalty for violations at nv. Thus, for complete, honest reporting to be feasible, the marginal cost of miss-

ing any observations must overwhelm marginal operating costs and penalties from additional violations

when all violations have been reported. Unless nv ≈ 0, the assumed convexity of pm and pv likely rules

out this possibility.

Subcase 4b: nv > rv > 0 and rc = nc > 0 Here, nv > rv > 0 satisfies L3 with inequality, requiring

λ1 = 0 to satisfy L7. rc = nc satisfies L4 and L8 with equality. L1 becomes

−p′v(rv)+ p′m(nv − rv)− c = 0

=⇒ p′m(nv − rv) = p′v(rv)+ c

L2 becomes

p′m(nv − rv)− c−λ2 = 0

=⇒ λ2 = p′m(nv − rv)− c ≥ 0

=⇒ p′m(nv − rv)≥ c

These conditions are feasible for most settings.

Subcase 4c: rv = nv > 0 and nc > rc > 0 Here, rv = nv satisfies L3 and L7 with equality. rc < nc

satisfies L4 with inequality, which requires λ2 = 0 to satisfy L8. L1 becomes

−p′v(nv)+ p′m(nc − rc)− c−λ1 = 0

L2 becomes

p′m(nc − rc)− c = 0

Jointly, these two conditions imply λ1 =−p′v(nv)< 0, which is infeasible.

Subcase 4d: nv > rv > 0 and nc > rc > 0 Finally, rv < nv satisfies L3 with inequality, requiring λ1 = 0

to satisfy L7. rc < nc satisfies L4 with inequality, requiring λ2 = 0 to satisfy L8. rv > 0 satisfies L5
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with inequality, requiring λ3 = 0 to satisfy L9. rc > 0 satisfies L6 with inequality, requiring λ4 = 0 to

satisfy L10. L1 becomes

−p′v(rv)+ p′m(N − rv − rc)− c = 0

L2 becomes

p′m(N − rv − rc)− c = 0

Jointly, L1 and L2 imply p′v(rv) = 0, which is not feasible (By assumption: p′′v > 0.)

To summarize, Table A.1 tabulates our conclusions for all the cases above.

Table A.1: Summary of Possible Scenarios

Pct. of observations reported

Case Reporting Violations Compliance Feasibility Constraint(s)

1 rv = rc = 0 0% 0% Unlikely c ≥ p′m(N)

2a rv = 0 and rc = nc 0% 100% Feasible
p′v(0)+ c ≥ p′m(nv)

p′m(nv)≥ c

2b rv = 0 and nc > rc > 0 0% ∈ (0%, 100%) Feasible p′m(N − rc) = c

3a rv = nv and rc = 0 100% 0% Infeasible c ≥ p′m(nc)

3b nv > rv > 0 and rc = 0 ∈ (0%, 100%) 0% Infeasible λ4 =−p′v(rv)< 0

4a rv = nv and rc = nc 100% 100% Unlikely p′m(0)≥ c+ p′v(nv)

4b nv > rv > 0 and rc = nc ∈ (0%, 100%) 100% Feasible p′m(nv − rv)≥ c

4c rv = nv and nc > rc > 0 100% ∈ (0%, 100%) Infeasible λ1 =−p′v(nv)< 0

4d nv > rv > 0 and nc > rc > 0 ∈ (0%, 100%) ∈ (0%, 100%) Infeasible p′v(rv) = 0
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Appendix B. Additional Figures and Tables
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Figure B.1. Monitoring Data Completeness Goals

Notes: Sourced from U.S. EPA. Quality Assurance Handbook for Air Pollution Measurement Systems Volume II Ambient Air Quality
Monitoring Program. Vol. 2. EPA-454/B-13-003 (2013). From Section 6.0, page 66: “The data cells highlighted in Table 6-4 refer
to the standards that apply to the specific pollutant. Even though a highlighted cell lists the completeness requirement, CFR provides
additional detail, in some cases, on how a design value might be calculated with less data than the stated requirement. Therefore, the
information provided in Table 6-4 should be considered the initial completeness goal.”
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Figure B.2. Air Pollution Monitoring Site Example

A. Monitoring site

B. Shelter Design

C. Look Inside a Shelter

Sources: U.S. EPA (panel A), California Resources Board (panel B), and Glenn Gehring (panel C).
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Figure B.3. Distribution of Forecasted AQI on Alert Days
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Notes: Distribution of forecasted Air Quality Index on days with pollution alerts issued.

Figure B.4. Distribution of Forecasted AQI on Non-Alert Days

Notes: Distribution of forecasted Air Quality Index on days without pollution alerts issued.
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Figure B.5. Distribution of p-values: Robustness
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Notes: Robustness checks of panel A, Figure 2. See Section 4 of the paper for details.

Figure B.6. Distribution of p-values: Placebo Test
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Notes: This figure repeats panel A, Figure 2, but using a randomly chosen alert profile for each monitor.
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Figure B.7. Robustness: “Interesting” Monitors (△) and Other Monitors (◯) Separation
with the Sharpened Test Statistic
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Notes: This graph shows mean monitoring capture rate for “interesting” monitors (those with p−value<0.05) and other monitors. The
sharpened test rejects the null if the capture rate around time zero is lower than both the pre-period and the post-period. See Section
4.1 for more details. Data are demeaned by the average capture rate across the first ten event days. Fitted lines show three-day moving
averages of point estimates. Each panel corresponds to one pollutant. Histograms show the distributions of p−values for the corresponding
pollutant monitors.
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Figure B.8. County-level Safe Drinking Water Act Violations

Notes: Maps show county-level distribution of Safe Drinking Water Act (SDWA) violation. Data are sourced from Allaire, Mackay, Zheng,
and Lall (2019). Left panel highlights counties with any SDWA violation between 2006-2015. Right panel plots number of violations.
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Figure B.9. Distributions of Daily Observed and Nearby-Monitor-Predicted Concentration, Non-PM2.5 Monitors
A. PM10 monitors, “interesting” (left) and “non-interesting” (right)
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B. O3 monitors, “interesting” (left) and “non-interesting” (right)
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C. NO2 monitors, “interesting” (left) and “non-interesting” (right)

0
.0

1
.0

2
.0

3
.0

4
.0

5
.0

6
D

en
si

ty

0 20 40 60 80
NO2 (ppb)

Observed value, when not missing monitoring
Predicted value, when not missing monitoring
Predicted value, when missing monitoring

0
.0

1
.0

2
.0

3
.0

4
.0

5
.0

6
D

en
si

ty

0 20 40 60 80
NO2 (ppb)

Observed value, when not missing monitoring
Predicted value, when not missing monitoring
Predicted value, when missing monitoring

D. SO2 monitors, “interesting” (left) and “non-interesting” (right)
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E. CO monitors, “interesting” (left) and “non-interesting” (right)

0
1

2
3

4
D

en
si

ty

0 .5 1 1.5
CO (ppm)

Observed value, when not missing monitoring
Predicted value, when not missing monitoring
Predicted value, when missing monitoring

0
1

2
3

4
D

en
si

ty

0 .5 1 1.5
CO (ppm)

Observed value, when not missing monitoring
Predicted value, when not missing monitoring
Predicted value, when missing monitoring

Notes: Repetition of panel A, Figure 9 with other pollutant monitors. See Section 5 of the paper for details.
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Table B.1. Correlates of “Interesting” Monitors (ever violating SDWA)
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Dep. var.: 1(p-value ≤ 0.05) 1(q-value ≤ 0.05)

Clean Air Act non-attainment 0.066** 0.064** 0.096*** 0.075* 0.039* 0.038* 0.057** 0.058**
(0.030) (0.031) (0.032) (0.041) (0.021) (0.021) (0.022) (0.028)

Safe Drinking Water Act violation 0.016 0.015 0.027 -0.002 0.008 0.008 0.015 -0.003
(0.018) (0.018) (0.018) (0.022) (0.012) (0.012) (0.012) (0.015)

Above median Democrats -0.030 -0.019
(0.029) (0.020)

Above median LCV score -0.035 -0.027
(0.030) (0.020)

Above median government size 0.015 0.003
(0.019) (0.013)

Above median corruption 0.028 0.005
(0.020) (0.014)

State fixed effects ✓ ✓

Mean dep. var. 0.117 0.117 0.117 0.117 0.117 0.052 0.052 0.052 0.052 0.052
Observations 1,359 1,354 1,354 1,354 1,354 1,359 1,354 1,354 1,354 1,354

Notes: Each column is a separate regression. Underlying data is a cross-section of monitors matched to parenting county’s characteristics. Dependent variable is an
indicator for whether the monitor’s p−value is less than 0.05 (columns 1-5), or an indicator for whether the monitor’s FDR-adjusted significance q−value is less than
0.05 (columns 6-10) where the family of tests is all 1,359 monitors. “Clean Air Act non-attainment” is an indicator for whether the county has ever been in NAAQS
non-attainment throughout the study period. “Safe Drinking Water Act violation” is a dummy for the county ever having any SDWA tier-1 violations. “Above median”’s
indicate the county has an above-median level of share of Democrats affiliation (2006 Gallup Poll), League of Conservation Voters score, share of government-sector
employees (Bureau of Economic Analysis, NAICS=92), and per-capita number of federal convictions among state and local public officials (Glaeser and Saks, 2006). *:
p < 0.10; **: p < 0.05; ***: p < 0.01.
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Table B.2. Correlates of “Interesting” Monitors (number of SDWA violations)
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Dep. var.: 1(p-value ≤ 0.05) 1(q-value ≤ 0.05)

Clean Air Act non-attainment 0.066** 0.075** 0.099*** 0.076* 0.039* 0.043** 0.057** 0.057**
(0.030) (0.031) (0.032) (0.041) (0.021) (0.022) (0.022) (0.028)

Safe Drinking Water Act #violations 0.004 0.006 0.003 0.001 0.001 0.002 0.001 -0.003
(0.004) (0.004) (0.004) (0.005) (0.003) (0.003) (0.003) (0.003)

Above median Democrats -0.031 -0.019
(0.029) (0.020)

Above median LCV score -0.027 -0.024
(0.030) (0.021)

Above median government size 0.013 0.003
(0.019) (0.013)

Above median corruption 0.027 0.004
(0.020) (0.014)

State fixed effects ✓ ✓

Mean dep. var. 0.117 0.117 0.117 0.117 0.117 0.052 0.052 0.052 0.052 0.052
Observations 1,359 1,354 1,354 1,354 1,354 1,359 1,354 1,354 1,354 1,354

Notes: Each column is a separate regression. Underlying data is a cross-section of monitors matched to parenting county’s characteristics. Dependent variable is an
indicator for whether the monitor’s p−value is less than 0.05 (columns 1-5), or an indicator for whether the monitor’s FDR-adjusted significance q−value is less than
0.05 (columns 6-10) where the family of tests is all 1,359 monitors. “Clean Air Act non-attainment” is an indicator for whether the county has ever been in NAAQS
non-attainment throughout the study period. “Safe Drinking Water Act #violations” is a continuous variable of the number of SDWA tier-1 violations. “Above median”’s
indicate the county has an above-median level of share of Democrats affiliation (2006 Gallup Poll), League of Conservation Voters score, share of government-sector
employees (Bureau of Economic Analysis, NAICS=92), and per-capita number of federal convictions among state and local public officials (Glaeser and Saks, 2006). *:
p < 0.10; **: p < 0.05; ***: p < 0.01.
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