
Section 5: Inference and parallelization
Ed Rubin

Contents

1 Admin 1
1.1 Follow ups . 2
1.2 What you will need . 4
1.3 Last week . 4
1.4 This week . 4

2 Testing hypotheses 4
2.1 Setting up . 4
2.2 magrittr . 5
2.3 t tests . 6
2.4 p-values . 8
2.5 Put it all together . 8

3 F tests 10
3.1 The formal part . 10
3.2 F in R . 11
3.3 Warnings/messages . 12

4 Simulation 14
4.1 Functions . 14
4.2 Graphs . 15

5 Parallelization 19
5.1 On Mac and Linux . 19
5.2 On Windows . 21
5.3 Notes . 24
5.4 Resources . 24

1 Admin

1. I posted the solutions for the first problem set on bCourses (Files/Problem Sets/Problem Set 1/problem-
Set1Solutions.pdf).

2. Monday is (technically) a holiday. Move or keep office hours?
3. Please take this survey (ASAP) to help me understand how section is helping and failing.

1

https://edrubin.typeform.com/to/M8nA1P

1.1 Follow ups

1.1.1 Redefining missing values

Someone asked about updating values of an existing data frame—for instance changing all .. to NA. As is
generally the case in R, you have a few options.

Let’s create a simple working example.

library(pacman)
p_load(dplyr)
x <- data.frame(a = c(1:4, NA), b = c("..", 1, 2, 3, "..")) %>% as_tibble()
x

A tibble: 5 x 2

a b

<int> <chr>

1 1 ..

2 2 1

3 3 2

4 4 3

5 NA ..

Option 1: Indexing and logical operators We can use R’s standard indexing in conjunction with logical
operators to replace the unwanted values:

x <- data.frame(a = c(1:4, NA), b = c("..", 1, 2, 3, "..")) %>% as_tibble()
x[x == ".."] <- NA

x

A tibble: 5 x 2

a b

<int> <chr>

1 1 <NA>

2 2 1

3 3 2

4 4 3

5 NA <NA>

Notice that the class of the b column is still factor, so we would still need to convert the column to numeric (x
<- mutate(x, b = as.numeric(b)))

Option 2: replace and mutate You can combine the (base) replace() function with dplyr’s mutate().
replace() wants three arguments: the data (vector), a list of the indices that should be replaced, and the
new values. Using replace(), we can write a function that performs our desired replacement. I’ll also use
as.numeric() to convert result to numeric.

Define our function
rep_na <- function(y) replace(y, which(y == ".."), NA)

Make some data
x <- data.frame(a = c(1:4, NA), b = c("..", 1, 2, 3, "..")) %>% as_tibble()

2

Replace .. with NA
x %>% mutate(b = rep_na(b) %>% as.numeric())

A tibble: 5 x 2

a b

<int> <dbl>

1 1 NA

2 2 1

3 3 2

4 4 3

5 NA NA

You can use mutate_all() to apply the function to all columns:

Make some data
x <- data.frame(a = c(1:4, NA), b = c("..", 1, 2, 3, "..")) %>% as_tibble()
Replace .. with NA
x %>% mutate_all(rep_na) %>% mutate_all(as.numeric)

A tibble: 5 x 2

a b

<dbl> <dbl>

1 1 NA

2 2 1

3 3 2

4 4 3

5 NA NA

In addition to mutate_all(), there are a bunch of other similar functions like mutate_at(), mutate_each(),
and mutate_if() (and similar suffixes for all of the standard functions in dplyr). Check them out.

Note: Multiple values to NA If you want to convert multiple values to NA (e.g., both ".." and ""), then use
the logical operator %in%, e.g., x[x %in% c("..", "")] <- NA.

1.1.2 Interactions and polynomials

For R’s canned regression functions, you can specify interactions and polynomial terms, but the syntax is not
exactly what you might guess:

• Polynomials: For higher-order terms, you need to use the I() function, i.e., x + I(xˆ2) + I(xˆ3)

• Interactions: Use : to specify the interaction between two variables (x1:x2). For those of use who are
a bit lazy/efficient, you can use * to specify the main effects and the interaction (x1*x2 is equivalent to
x1 + x2 + x1:x2).

1.1.3 Code folding

RStudio allows you to collapse/expand the current section or all sections. I don’t think it has any other flexibility
in collapsing/expanding.

3

1.2 What you will need

Packages:

• Previously used: dplyr, lfe, readr
• New: magrittr and parallel (parallel is likely already installed)

Data: The auto.csv file.

Review: It will also be helpful if you review the simulations from section 3 and section 4.

1.3 Last week

In our previous section, we discussed logical operators, optional arguments to functions, the Frisch-Waugh-
Lovell theorem (and its applications—omitted variable bias, bad controls), and R2/measures of fit.

1.4 This week

Testing hypotheses in R! Plus simulation and parallelizing your code.

2 Testing hypotheses

This week we will focus on statistically testing hypotheses in R, which generally takes the form of testing
whether a point estimate (e.g., a coefficient) is significantly different from some value (generally, zero).

The topic of hypothesis testing is super important1 but perhaps a little overlooked. We spend a lot of time
cleaning and pruning our data, demonstrating the unbiasedness (or consistency or other properties) of various
estimators, discussing identification strategies2, and writing models, and we can easily forget the original point
of the exercise. In econometrics, the original point of the exercise is often something like: is there evidence
of meaningful relationship between the variables y and x? The point estimate from the regression of y on x
doesn’t actually answer this question; it gives us a best guess at the slope of a line drawn between y and x.
Hypothesis testing (and calculating standard errors) will tell us about the evidence for a relationship between
y and x.

2.1 Setting up

As we discussed before, I find it helpful to have a section of my R script where I set settings, load libraries,
define directories, read data.

Settings
options(stringsAsFactors = F)

Packages
library(pacman)
p_load(dplyr, lfe, magrittr, readr)

1Not a technical term.
2If this phrase does not make sense, don’t worry. Just wait until ARE 213.

4

Section05/auto.csv
section03.html
section04.html

Directories
dir_data <- "/Users/edwardarubin/Dropbox/Teaching/ARE212/Section05/"

Load the dataset from CSV
cars <- paste0(dir_data, "auto.csv") %>% read_csv()

We should also load the functions that we will want to use:

Functions ----
Function to convert tibble, data.frame, or tbl_df to matrix
to_matrix <- function(the_df, vars) {

Create a matrix from variables in var
new_mat <- the_df %>%

Select the columns given in 'vars'
select_(.dots = vars) %>%

Convert to matrix
as.matrix()

Return 'new_mat'
return(new_mat)

}

Function for OLS coefficient estimates
b_ols <- function(data, y_var, X_vars, intercept = TRUE) {

Require the 'dplyr' package
require(dplyr)
Create the y matrix
y <- to_matrix(the_df = data, vars = y_var)

Create the X matrix
X <- to_matrix(the_df = data, vars = X_vars)

If 'intercept' is TRUE, then add a column of ones
if (intercept == T) {

Bind a column of ones to X
X <- cbind(1, X)

Name the new column "intercept"
colnames(X) <- c("intercept", X_vars)

}

Calculate beta hat
beta_hat <- solve(t(X) %*% X) %*% t(X) %*% y

Return beta_hat
return(beta_hat)

}

2.2 magrittr

Notice that we loaded a new package called magrittr. We’ll talk about its functions shortly. magrittr offers is
more flexibility for piping commands—similar to dplyr’s pipe %>%. Fun facts: the package’s name comes from
the Belgian artist René Magritte. Specifically, the package is referencing Magritte’s painting “The Treachery of
Images,” which shows a pipe and the caption “This is not a pipe.” Get it?

5

https://www.wikiwand.com/en/Rene_Magritte#/Philosophical_and_artistic_gestures
https://www.wikiwand.com/en/The_Treachery_of_Images

2.3 t tests

Before we get to the math, you should know that a Guinness brewer named William S. Gosset developed the t
test to deal with the fact that his sample means did not act normally. More.

Okay. Now let’s math it up.

Suppose we want to test whether the jth coefficient βj in our model is is significantly different from some
other value γ̄, using the significance level α. Following Max’s notes, we can calculate the t statistic for the jth

coefficient as

tj = bj − γ̄√
s2 ·

{
(X′X)−1

}
jj

= bj − γ̄

se (bj)

where bj is our estimate for βj , s2 is our estimate of σ2, and
{

(X′X)−1
}

jj
is the jth diagonal element of

(X′X)−1.

Now let’s write a function in R that will calculate this test statistic.

t_stat <- function(data, y_var, X_vars, gamma, intercept = T) {

Turn data into matrices
y <- to_matrix(data, y_var)

X <- to_matrix(data, X_vars)

Add intercept if requested
if (intercept == T) X <- cbind(1, X)

Calculate n and k for degrees of freedom
n <- nrow(X)
k <- ncol(X)
Estimate coefficients
b <- b_ols(data, y_var, X_vars, intercept)

Calculate OLS residuals
e <- y - X %*% b

Calculate s^2
s2 <- (t(e) %*% e) / (n-k)

Force s2 to numeric
s2 %<>% as.numeric()
Inverse of X'X
XX_inv <- solve(t(X) %*% X)

Standard error
se <- sqrt(s2 * diag(XX_inv))
Vector of _t_ statistics
t_stats <- (b - gamma) / se

Return the _t_ statistics
return(t_stats)

}

You could probably write the same function in a single (long) line of code. However, it would be (1) ugly and
(2) difficult to debug. I recommend some intermediate steps—even if you are using pipes.

6

https://priceonomics.com/the-guinness-brewer-who-revolutionized-statistics/

Now let’s test drive our function t_stat() on our car data.3 Specifically, let’s regress price on an intercept,
weight, and mpg and test the estimated coefficients against the null hypothesis that they are zero, i.e., γ̄ =
[0 0 0]′.

We should probably compare our calculated t statistics to the t statistics calculated by the function felm(). For
this task, we will grab the coefficients from the summary() function4 after it is applied to felm(). To grab
the coefficients from summary() we will use the %$% operator from magrittr.

2.3.1 %$%

Officially, the %$% pipe is called the exposition pipe operator because it exposes the names of the left-hand-side
object to the right-hand-side expression. More simply: %$% helps you avoid using too many $s. For example, if
you want to find the correlation between price and weight, you could type cor(cars$price, cars$weight)

or you could go with cars %$% cor(price, weight).

cor(cars$price, cars$weight)

[1] 0.5386115

cars %$% cor(price, weight)

[1] 0.5386115

For more on the magrittr package, type vignette("magrittr") into your console. Vignettes are helpful
summaries of packages. To see all of the vignettes available, type browseVignettes().

2.3.2 Back to t statistics!

Okay, so let’s finally compare our function to felm()’s results.

First, our function:

t_stat(cars,
y_var = "price", X_vars = c("mpg", "weight"),

gamma = 0, intercept = T)

price

intercept 0.5410180

mpg -0.5746808

weight 2.7232382

And now the t statistics from felm()5

felm(price ~ mpg + weight, cars) %>%

summary() %$% (coefficients)[,3]

(Intercept) mpg weight

0.5410180 -0.5746808 2.7232382

3Bad pun, I know.
4The summary() function is an example of a generic function in R: when you call summary() on the results from felm(), it is actually

using the function summary.felm(). summary() looks at the class of the object you feed it and then decides which function to use to
create the summary.

5The reason we use (coefficients)[,3] is that the coefficients object is actually a matrix with coefficient estimates, standard
errors, t statistics, and p-values. The [,3] tells R we only want the third column of this matrix, which is the column with the t statistics.

7

Huzzah! They match! But unless you have a table of t statistics stored in your head, you will want more than
a vector of t statistics. We want p-values.

2.4 p-values

What do we need to do to turn our newly calculated t statistics into p-values? First off, we are going to stick with
two-sided hypothesis tests where the null hypothesis is our parameter is zero.6 We need to find the percentage
of the t distribution (with n − k degrees of freedom) that is more extreme than (the absolute value) of our test
statistic. More formally, the p-value p for our jth t statistic tj is defined as

p = Pr (tdf > |tj |) × 2

Let’s code up the calculation of a p-value. We will make use of the function pt(q, df), which gives the
distribution function for a t-distributed random variable evaluated at q with df degrees of freedom. In our
situation, we will make use of pt()’s optional argument lower.tail. The lower.tail argument defaults to
TRUE, which means pt() is evaluating the CDF at q. If we set the lower.tail argument to FALSE, then we will
get one minus the CDF, which is what we want for the p-value.

Example

The default: lower.tail = TRUE
pt(q = 2, df = 15)

[1] 0.9680275

Setting lower.tail = TRUE
pt(q = 2, df = 15, lower.tail = T)

[1] 0.9680275

Setting lower.tail = FALSE
pt(q = 2, df = 15, lower.tail = F)

[1] 0.0319725

This situation is a great example of how R plays very nicely with vectors. Imagine we have a vector of t statistics
named t_stats. We can calculate the p-values associated with the t statistics via

pt(q = abs(t_stats), df = n-k, lower.tail = F) * 2

2.5 Put it all together

Finally, let’s put together a nice-ish table like the one that felm() returns: coefficient estimates, standard
errors, t statistics, and p-values. Because I’m so clever, we’ll call the function that performs this task ols().7

In addition, because many of our functions return matrices, we will use as.vector() to convert 1×k or k ×1
matrices to vectors. We will also use the round() function to maintain a reasonable number of digits.

ols <- function(data, y_var, X_vars, intercept = T) {

Turn data into matrices
y <- to_matrix(data, y_var)

6These two assumptions will not always be true in econometrics—but they will be true 99.99999% of the time.
7Because we are assuming the null hypothesis is always the parameter equals zero, our function with not have a gamma argument.

Feel free to change this part.

8

X <- to_matrix(data, X_vars)

Add intercept if requested
if (intercept == T) X <- cbind(1, X)

Calculate n and k for degrees of freedom
n <- nrow(X)
k <- ncol(X)
Estimate coefficients
b <- b_ols(data, y_var, X_vars, intercept)

Calculate OLS residuals
e <- y - X %*% b

Calculate s^2
s2 <- (t(e) %*% e) / (n-k)

Update s2 to numeric
s2 %<>% as.numeric()
Inverse of X'X
XX_inv <- solve(t(X) %*% X)

Standard error
se <- sqrt(s2 * diag(XX_inv))
Vector of _t_ statistics
t_stats <- (b - 0) / se

Calculate the p-values
p_values = pt(q = abs(t_stats), df = n-k, lower.tail = F) * 2

Nice table (data.frame) of results
results <- data.frame(

The rows have the coef. names
effect = rownames(b),
Estimated coefficients
coef = as.vector(b) %>% round(3),
Standard errors
std_error = as.vector(se) %>% round(3),
t statistics
t_stat = as.vector(t_stats) %>% round(3),
p-values
p_value = as.vector(p_values) %>% round(4)
)

Return the results
return(results)

}

Finally, let’s test our function and compare it to the output of felm() and the coefficients it outputs in
summary().

ols(data = cars,

y_var = "price",

X_vars = c("mpg", "weight"),

intercept = T)

effect coef std_error t_stat p_value

1 intercept 1946.069 3597.050 0.541 0.5902

2 mpg -49.512 86.156 -0.575 0.5673

9

3 weight 1.747 0.641 2.723 0.0081

felm(price ~ mpg + weight, cars) %>%

summary() %$% coefficients

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1946.068668 3597.0495988 0.5410180 0.590188628

mpg -49.512221 86.1560389 -0.5746808 0.567323727

weight 1.746559 0.6413538 2.7232382 0.008129813

Pretty cool, eh?

3 F tests

As Max has likely told you, there will be situations where you don’t care as much about testing the significance
of individual coefficients as you care about testing joint significance. For example, is there evidence that either
β1 or β2 differ significantly from zero? Enter the F test!8

3.1 The formal part

Assume our data-generating process is

y = β0 + x1β1 + x2β2 + x3β3 + ε

To test whether β1, β2, and β3 are jointly different from zero, we need two more objects: R and r. R is a
j × k matrix where j is the number of joint hypotheses we will test and k is the number of coefficients in our
model (inclusive of the intercept). The R matrix creates linear combinations of the coefficients for each of
individual hypotheses that we will jointly test. The j × 1 vector r gives the right-hand side of the hypotheses
that we want to test.

For example, if we want to jointly test β1 = 1, β2 = 0 and β3 = 7, our matrices would be9

R =

 0 1 0 0
0 0 1 0
0 0 0 1

 and r =

 1
0
7

If we want to jointly test that β1, β2, and β3 are jointly different from zero, the matrices become

R =

 0 1 0 0
0 0 1 0
0 0 0 1

 and r =

 0
0
0

As you saw in lecture, you can write the statistic in the F test as

8Joint significance is a little bit of a strange idea. We are basically asking if there is evidence that at least one of the coefficients is
significantly different from zero.

9If you are having trouble seeing how R and r work, write out the multiplication of Rβ = r with βs. It should give you a better
sense of what is going on here.

10

F =
(Rb − r)′

[
R (X′X)−1

]
(Rb − r)/J

s2 =
(Rb)′

[
R (X′X)−1

]
(Rb)/J

s2

where the equality comes from the special (though common) case of r = 0. In our case, J = 3 because we
are jointly testing three hypotheses (also called imposing three restrictions).

3.2 F in R

Now we will write up a function that jointly tests all of the coefficients (except the intercept). Here, I will
assume the joint hypotheses in which we are interested take the from βi = 0. You should feel free to write
more complex functions that take an arbitrary R and r. I’m also going to assume that we want an intercept.

joint_test <- function(data, y_var, X_vars) {

Turn data into matrices
y <- to_matrix(data, y_var)

X <- to_matrix(data, X_vars)

Add intercept
X <- cbind(1, X)

Name the new column "intercept"
colnames(X) <- c("intercept", X_vars)

Calculate n and k for degrees of freedom
n <- nrow(X)
k <- ncol(X)
J is k-1
J <- k - 1

Create the R matrix: bind a column of zeros
onto a J-by-J identity matrix
R <- cbind(0, diag(J))

Estimate coefficients
b <- b_ols(data, y_var, X_vars)

Calculate OLS residuals
e <- y - X %*% b

Calculate s^2
s2 <- (t(e) %*% e) / (n-k)

Force s2 to numeric
s2 %<>% as.numeric()

Create the inner matrix R(X'X)^(-1)R'
RXXR <- R %*% solve(t(X) %*% X) %*% t(R)
Calculate the F stat
f_stat <- t(R %*% b) %*% solve(RXXR) %*% (R %*% b) / J / s2

Calculate the p-value
p_value <- pf(q = f_stat, df1 = J, df2 = n-k, lower.tail = F)

Create a data.frame of the f stat. and p-value
results <- data.frame(

f_stat = f_stat %>% as.vector(),

11

p_value = p_value %>% as.vector())
return(results)

}

Now run the F test jointly testing the significance of the coefficients on miles per gallon and weight (with the
outcome variable price).

joint_test(data = cars,

y_var = "price", X_vars = c("mpg", "weight"))

f_stat p_value

1 14.73982 4.424878e-06

Finally, let’s check if the our function matches felm()’s joint statistic and p-value.

felm(price ~ mpg + weight, cars) %>%

summary() %$% F.fstat

F df1 df2 p

1.473982e+01 2.000000e+00 7.100000e+01 4.424878e-06

3.3 Warnings/messages

What if you want to incorporate this F statistic and joint test p-value in your ols() function? You might face
a few challenges.

1. We created a nice table at the end of the ols() function. Where would we put this new output from
the F test? One option is to use a list: you could return a list where the first element is our nice results
table and the second element is the information from our F test.

2. The second challenge that you face is that our ols() function allows the user to select whether or not
to include an intercept, but we need an intercept for our F test. Solution: warning and error messages
in R.

For an extreme solution, you could write an if statement that checked whether the user specified intercept

= F. If intercept is indeed FALSE, you could stop the function in its tracks and print the error message “No
intercept!”. In code, this would look like

if (intercept == F) stop("No intercept!")

However, this solution is a bit extreme: you will not be able to get your results for the other parts of your
function if intercept = F. Instead, you might want to use the warning() function to warn the user that
because she/he requested no intercept, you will not return an F statistic or joint p-value. Let’s do it.

Below is a function ols_joint() that returns a list of results and issues a warning if the user specifies no
intercept.

ols_joint <- function(data, y_var, X_vars, intercept = T) {

Run the ols() function
ols_results <- ols(data, y_var, X_vars, intercept)

If intercept is T, run the joint_test() function
Otherwise, define joint_results to be NA and
issue a warning
if (intercept == T) {

12

joint_results <- joint_test(data, y_var, X_vars)

} else {

warning("No intercept: will not perform F test.")

joint_results <- data.frame(
f_stat = NA,

p_value = NA)

}

Create the results list
results <- list(ols_results, joint_results)

Return the results list
return(results)

}

Now let’s see what happens when we include and exclude an intercept.

With an intercept:

ols_joint(data = cars,

y_var = "price",

X_vars = c("mpg", "weight"),

intercept = T)

[[1]]

effect coef std_error t_stat p_value

1 intercept 1946.069 3597.050 0.541 0.5902

2 mpg -49.512 86.156 -0.575 0.5673

3 weight 1.747 0.641 2.723 0.0081

##

[[2]]

f_stat p_value

1 14.73982 4.424878e-06

Without an intercept:

ols_joint(data = cars,

y_var = "price",

X_vars = c("mpg", "weight"),

intercept = F)

Warning in ols_joint(data = cars, y_var = "price", X_vars = c("mpg",

"weight"), : No intercept: will not perform F test.

[[1]]

effect coef std_error t_stat p_value

1 mpg -5.479 28.122 -0.195 0.8461

2 weight 2.076 0.199 10.431 0.0000

##

[[2]]

f_stat p_value

1 NA NA

13

4 Simulation

I think it’s time for a simulation. Let’s simulate the power (probability that we reject the null when the null is
false) of a simple linear regression. We will also incorporate sample size into this simulation. First, let’s write
a few functions.

4.1 Functions

The first function will generate data for the regression, given a sample size sample_size. As I mentioned
above, we will stick with a simple linear regression

y = β0 + β1x + ε

Let’s assume β0 = 7 and β1 = 0.5. We will draw x and ε from the standard normal distribution.10

Function to generate data
gen_data <- function(sample_size) {

Create data.frame with random x and error
data_df <- data.frame(

x = rnorm(sample_size),
e = rnorm(sample_size))

Calculate y = 7 + 0.5 x + e; drop 'e'
data_df %<>% mutate(y = 7 + 0.5 * x + e) %>%

select(-e)
Return data_df
return(data_df)

}

Now we will write a function that takes the output of gen_data() and feeds it to ols(), which gives us the
coefficient estimates and p-value from testing the coefficients against zero.

one_sim <- function(sample_size) {

Estimate via OLS
ols_est <- ols(data = gen_data(sample_size),

y_var = "y", X_vars = "x")

Grab the estimated coefficient on x
(the second element of 'coef')
b1 <- ols_est %$% coef[2]

Grab the second p-value
(the first p-value is for the intercept)
p_value <- ols_est %$% p_value[2]

Return a data.frame with b1 and p_value

10Below you will notice a new pipe operator, %<>%. This operator is also from the magrittr package. This pipe does exactly what
our old friend %>% does, but it then assigns the final value to the object on the left-hand side of %<>%. For instance, tmp %<>% mean()
takes the object tmp, calculates its mean, and then replaces tmp with the calculated mean. Without using %<>%, one would write tmp
<- tmp %>% mean() or tmp <- mean(tmp). The %<>% operator is especially helpful when chaining together several commands with
the standard pipe %>%.

14

return(data.frame(b1, p_value))

}

Finally, we need to write a function that will run the simulation n_sims times. One option we used previously is
the lapply() function. I’ll provide you with an alternative here that uses replicate().11 replicate() needs
two arguments: the number of replications (n) and the expression (expr) you would like to replicate. You can
also give replicate() an argument called simplify which tells the function how to format the results (which
type of class). I prefer setting simplify = F so that I know I will get a list. We can then use bind_rows() on
the list to create a nice data frame.

The function will require two arguments: n_sims, the number of simulations that we want to run, and n, the
sample size drawn within each simulation. The function will also accept a third optional argument seed, which
is the seed we will use in the simulation. The default value for seed will be 12345.

ols_sim <- function(n_sims, sample_size, seed = 12345) {

Set the seed
set.seed(seed)
Run one_sim n_sims times; convert results to data.frame
sim_df <- replicate(

n = n_sims,

expr = one_sim(sample_size),
simplify = F

) %>% bind_rows()
Return sim_df
return(sim_df)

}

Finally, let’s run the ols_sim() function for two different sample sizes: 10 and 100. For each sample size, we
will run the simulation 1,000 times.

Warning: Running two-thousand iterations of a simulation can take some time.

Run ols_sim for sample size of 10
sim10 <- ols_sim(n_sims = 1e3, sample_size = 10)

Run ols_sim for sample size of 100
sim100 <- ols_sim(n_sims = 1e3, sample_size = 100)

4.2 Graphs

Let’s look at our results. I’m going to use the ggplot2 package. Don’t worry about the coding syntax for the
moment: we will cover ggplot2 next section. For now, just look at the (pretty) pictures.12

p_load(ggplot2, ggthemes)

Density plot of the p-values for the sample-size 10 simulation

ggplot(data = sim10, aes(x = p_value)) +

stat_density(fill = "grey20", alpha = 0.9) +

11You are free to use either function—or an entirely different route. replicate() is a bit simpler, but lapply() has a parallelized
version. Your choice. The lapply() call would look something like lapply(X = rep(sample_size, n_sims), FUN = one_sim)

12If you want to run the code, you will need to install the packages ggplot2 and ggthemes.

15

geom_vline(xintercept = 0.05, color = "deeppink2", size = 1) +

theme_pander() +

xlab(expression(paste(italic("p"), "-Value"))) +

ylab("Density") +

ggtitle(expression(paste("Distribution of ", italic(p),
"-Values from 1,000 simulations with sample size 10")))

0

1

2

0.00 0.25 0.50 0.75 1.00
p−Value

D
en

si
ty

Distribution of p−Values from 1,000 simulations with sample size 10

Density plot of the p-values for the sample-size 100 simulation

ggplot(data = sim100, aes(x = p_value)) +

stat_density(fill = "grey20", alpha = 0.9) +

geom_vline(xintercept = 0.05, color = "deeppink2", size = 1) +

xlim(0, 0.1) +

theme_pander() +

xlab(expression(paste(italic("p"), "-Value"))) +

ylab("Density") +

ggtitle(expression(paste("Distribution of ", italic(p),
"-Values from 1,000 simulations with sample size 100")))

16

0

20000

40000

60000

0.000 0.025 0.050 0.075 0.100
p−Value

D
en

si
ty

Distribution of p−Values from 1,000 simulations with sample size 100

So what is the takeaway here? Power increases with sample size. Why does the second plot look so strange?
Nearly all of the p-values are approximately zero.

A related topic: How does sample size affect the distribution of estimates for β1?

Density plot of the estimates for β1 for sample-size 10 simulation

ggplot(data = sim10, aes(x = b1)) +

stat_density(fill = "grey70") +

geom_vline(xintercept = 0.5, color = "darkviolet", size = 1) +

theme_pander() +

xlab(expression(paste(beta[1], " estimate"))) +

ylab("Density") +

ggtitle(expression(paste("Distribution of ", beta[1],

" estimates from 1,000 simulations with sample size 10")))

17

0.0

0.3

0.6

0.9

1.2

−1 0 1 2
β1 estimate

D
en

si
ty

Distribution of β1 estimates from 1,000 simulations with sample size 10

Density plot of the estimates for β1 for sample-size 100 simulation

ggplot(data = sim100, aes(x = b1)) +

stat_density(fill = "grey70") +

geom_vline(xintercept = 0.5, color = "darkviolet", size = 1) +

theme_pander() +

xlab(expression(paste(beta[1], " estimate"))) +

ylab("Density") +

ggtitle(expression(paste("Distribution of ", beta[1],

" estimates from 1,000 simulations with sample size 100")))

18

0

1

2

3

0.3 0.5 0.7
β1 estimate

D
en

si
ty

Distribution of β1 estimates from 1,000 simulations with sample size 100

So what is going on here? We are seeing the distribution of the estimates for β1 get tighter around the true
parameter value as the sample size increases (make sure you note the differences on the x-axis).

5 Parallelization

Depending on your computer, the simulations above may have taken a little bit of time. Simulations can
sometimes take a long time—you are, after all, asking your computer to repeat a tasks thousands of times. So
how can you speed up this process?

1. Write more efficient code.
2. Parallelize where possible.

Let’s assume your/my code is as efficient as it can be (it rarely is). It’s time to parallelize. Parallelization in R
is fairly straightforward—especially if you are working on a Mac or in a Linux environment (sorry, Windows
folks). I will first cover parallelization for Mac/Linux machines. Then I will cover parallelization on Windows
machines.

5.1 On Mac and Linux

You will need to install the parallel package. The parallel package offers a number of functions to paral-
lelize your code, but today we will focus on the parallelized version of lapply(): mclapply(). After loading
the parallel package, enter ?mclapply into the R console to see the function description. As you can see,

19

mclapply() starts with the same two arguments as lapply()—X and FUN—and then offers a number of other
options. The most important option for us at the moment is mc.cores, which is the option that allows you to
choose how many processes to run simultaneously.

p_load(parallel)

While infinity would be a nice number to enter in the mc.cores argument, you should probably stick with a
number less than or equal to the number of cores on your computer. To see how many cores are available on
your machine, type detectCores() into the R console.

detectCores()

[1] 4

Looks like I have four.13

We are now going to parallelize our function ols_sim(). For this parallelization, we will replace the
replicate() function with a similar use of lapply(). However, instead of using plain old lapply(), we will
use mclapply() with four cores.

ols_sim_mc <- function(n_sims, sample_size, seed = 12345) {

Require the parallel package
require(parallel)
Set the seed
set.seed(seed)
Run one_sim n_sims times; convert results to data.frame
sim_df <- mclapply(

X = rep(x = sample_size, times = n_sims),

FUN = one_sim,

Specify that we want 4 cores
mc.cores = 4

) %>% bind_rows()
Return sim_df
return(sim_df)

}

Now let’s run the simulation again—both parallelized and non-parallelized. This time around, let’s go for
10,000 iterations. And let’s time everything (using proc.time() to get the time at which the simulation starts
and stops).

Not parallelized:

Run ols_sim for sample size of 10
start1 <- proc.time()
sim10 <- ols_sim(n_sims = 1e4, sample_size = 10)

stop1 <- proc.time()
Run ols_sim for sample size of 100
start2 <- proc.time()
sim100 <- ols_sim(n_sims = 1e4, sample_size = 100)

stop2 <- proc.time()

13You can sometimes get performance increases by using a number a little larger than your number of cores. I think this has
something to do with multi-threaded cores, but we are now getting outside of my area of expertise, so….

20

Parallelized:

Run ols_sim_mc for sample size of 10
start3 <- proc.time()
sim10_mc <- ols_sim_mc(n_sims = 1e4, sample_size = 10)

stop3 <- proc.time()
Run ols_sim_mc for sample size of 100
start4 <- proc.time()
sim100_mc <- ols_sim_mc(n_sims = 1e4, sample_size = 100)

stop4 <- proc.time()

What are the times? We can check them using the difference between the stop time and the start time for each
specification:

stop1 - start1

user system elapsed

93.131 1.745 96.832

stop2 - start2

user system elapsed

103.799 2.165 128.594

stop3 - start3

user system elapsed

99.074 2.582 48.605

stop4 - start4

user system elapsed

98.854 2.781 51.239

The column we care about here is the elapsed column (we can talk about the other columns another time).
Comparing the non-parallelized times (the suffixes 1 and 2) and the parallelized times (the suffixes 3 and 4)
reveals that parallelization in this setting (using four cores) cuts processing time approximately in half.

5.2 On Windows

The idea of parallelization does not change with Windows machines—what we covered above still applies—but
the Windows installation of R requires a slightly different method of parallelizing your code. You can use the
Windows-style parallelization we cove below on Mac or Linux computers, but you cannot use the Mac/Linux-
style parallelization on Windows computers.14 The only reason I am teaching both is that the Mac/Linux
methods are a bit easier.

We will still use the parallel package onWindows machines, but we will cover a fewmore functions necessary
for setting up the parallelization, and we will use the function parLapply() instead of mclapply().

Let’s get started. As above, you can check the number of cores available to you using the detectCores()

function from the parallel package.

14The most glaring issue is the fact that the Windows version of mclapply() does not allow mc.cores to be greater than one—i.e.,
it does not allow parallelization.

21

p_load(parallel)
detectCores()

[1] 4

Assuming you are ready to run some code in parallel, we will now set up a cluster using the makeCluster(),
clusterExport(), and clusterEvalQ() functions.

I recommend that you do set the number inside of makeCluster() to be less than or equal to the number of
cores that you detected above. You should also know that if you set the number of cores in makeCluster()

to be equal to the number of cores you detected, your computer may get really slow while you wait for your
parallelized code to finish (e.g., no Youtube).

Let’s make a cluster with four cores.

Make the cluster
cl <- makeCluster(4)

Your new cluster is entirely blank. The functions clusterExport() and clusterEvalQ() pass objects from
your current environment (what you see when you enter ls() in the R console) to the new clusters. You’ll
often want to use some of the data/functions/packages you have already loaded to the cluster. What I mean
here is even if you have loaded a few packages like dplyr and magrittr, they are not loaded on the cluster.

We can load packages using clusterEvalQ()—let’s load dplyr and magrittr.

Load packages to cluster
clusterEvalQ(cl = cl, {

Load packages
library(dplyr)
library(magrittr)
})

Notice that clusterEvalQ() is actually just evaluating the code that we give it. We could do other things here
than just loading functions.

We also need to load any user-defined functions that we want to use on the cluster (the functions we wrote
ourselves) to the cluster. For this task, we feed a character vector with the function/object names to the
function clusterExport(). We have five functions that we will use the in simulation, so let’s load them:15

Load custom functions
clusterExport(cl = cl, c("b_ols", "gen_data",

"one_sim", "ols", "to_matrix"))

You can also load data to the cluster using clusterExport(), for example, clusterExport(cl, "cars").
Alternatively, you could load everything in memory to the cluster using clusterExport(cl, ls()), but this
route is a bit lazy and probably will slow your simulations down.

We are finally ready to run our parallelized function. I am going to write it as a function and name the function
ols_sim_par(). All we are really doing is replacing the replicate() with parLapply(). Note that we need
to tell parLapply() which cluster to use (cl) and that fun is no longer capitalized as it was with lapply().
After defining this new simulation function ols_sim_par, we need to export it to the cluster, as we did with
our other user-defined functions.

15Now you are seeing why I like the Mac/Linux option for parallelization.

22

Define the function
ols_sim_par <- function(n_sims, sample_size, seed = 12345) {

Require the parallel package
require(parallel)
Set the seed
set.seed(seed)
Run one_sim n_sims times; convert results to data.frame
sim_df <- parLapply(

cl = cl,

X = rep(x = sample_size, times = n_sims),

fun = one_sim

) %>% bind_rows()
Return sim_df
return(sim_df)

}

Send it to the cluster
clusterExport(cl, "ols_sim_par")

Finally, we can run the simulation. As we did above in the Mac/Linux section, let’s time the parallelized and
non-parallelized versions and run them for 10,000 iterations.

Parallelized:

Run ols_sim_par for sample size of 10
start5 <- proc.time()
sim10_par <- ols_sim_par(n_sims = 1e4, sample_size = 10)

stop5 <- proc.time()
Run ols_sim_par for sample size of 100
start6 <- proc.time()
sim100_par <- ols_sim_par(n_sims = 1e4, sample_size = 100)

stop6 <- proc.time()

Not parallelized:

Run ols_sim for sample size of 10
start7 <- proc.time()
sim10 <- ols_sim(n_sims = 1e4, sample_size = 10)

stop7 <- proc.time()
Run ols_sim for sample size of 100
start8 <- proc.time()
sim100 <- ols_sim(n_sims = 1e4, sample_size = 100)

stop8 <- proc.time()

When you finish the calculations using your cluster, you need to stop it:

Stop the cluster
stopCluster(cl)

Putting it all together:

And finally, we can compare the time taken for the parallelized and non-parallelized versions of our functions:

stop5 - start5

23

user system elapsed

88.017 1.801 92.378

stop6 - start6

user system elapsed

83.945 1.503 86.924

stop7 - start7

user system elapsed

0.106 0.081 32.826

stop8 - start8

user system elapsed

0.113 0.082 31.515

The result? Parallelizing your simulation cuts the time in half!16

5.3 Notes

The gains from parallelizing your code can be huge—especially when you have access to huge research clusters
(the university, Amazon, and Google all host cheap-to-free possibilities for students). However, writing efficient
code can give you just as great of gains—and can also be less taxing on your computer (plus you can combine
efficient code with parallelization for even bigger gains). Also, the parallelization we covered today will not
work if your functions depend on previous outcomes from the simulation. This limitation generally not an
issue for econometricians, but you should probably still be aware of it.

5.4 Resources

There are a lot of resources—tutorials, packages, scripts—about parallelizing your R code. A decent place to
start is ParallelR.

16We are being a little inaccurate in the calculation of the Windows-style processing times: we should probably include the time
that it takes to set up the cluster—not just the time that it takes to run ols_sim_par().

24

http://www.parallelr.com/r-with-parallel-computing/

	Admin
	Follow ups
	What you will need
	Last week
	This week

	Testing hypotheses
	Setting up
	magrittr
	t tests
	p-values
	Put it all together

	F tests
	The formal part
	F in R
	Warnings/messages

	Simulation
	Functions
	Graphs

	Parallelization
	On Mac and Linux
	On Windows
	Notes
	Resources

