Section 2: R and matrix madness

Ed Rubin

Contents

1 Admin 1
1.1 Whatyouwillneed e 1
1.2 Summaryoflast time e e e e e e e e e e e e e e 1
1.3 Summaryof thissection e e e e e e e e 2

2 Data structures in R 2

3 Vectors 3
3.1 NUMETIC VECIOTS . . . v v v v e 3
3.2 Combining VECLOTS v v v ot e 4
3.3 Character VECtOrS v v v v i e 4

4 Matrices 5
4.1 matrix() . . o o o e e e e e e e e e e e e 5
4.2 Creating matriCes o i e e e e e e e e e e e e e e 6
4.3 TranspoSe v v i i e 7
4.4 Multiplication e e e e e e e 8
4.5 Identities and inverseso Lt e e e e e e e 9
4.6 Adding columnsS Or rOWSo e e e e e e e e e e e 10

5 Other tools 11

1 Admin

1.1 What you will need

1. The packages and data files from the previous lecture. The packages are readr, dplyr, and haven. (Run
install.packages(c("readr", "dplyr", "haven")))
2. The package psych. (Run install.packages("psych").)

1.2 Summary of last time

* Installing and loading packages
* File paths (finding, changing, defining)
* Loading data (.dta and .csv)

Follow up:

* My office hours are Mondays 3:30pm-5:30pm, Giannini Hall, room 236.
* Review last section’s notes on indexing.

Section01.zip
section01.html#indexing

e To create a folder, use the dir.create() function. E.g. dir.create("TestFolder") should
create a new folder named “TestFolder” in your current directory. To see if it worked, type
dir(). You can also check whether a folder already exists using the dir.exists() function, e.g.
dir.exists("TestFolder").

* A shortcut to clear your RStudio console: ctrl+L.

* If you have any questions about LaTeX and knitr, please check out my summary on using RStudio, LaTeX,
and knitr. I'm happy to field questions. Google works too.

1.3 Summary of this section

Data structures in R—vectors and matrices in detail.

2 Data structures in R

As we discussed previously, when you load or create data in R, you create objects. As you could probably guess,
there are different types of objects in R. For the most part, we will use four types of objects in this course. Today
we will focus on vectors and matrices today.

1. vectors

2. matrices

3. data frames (or similar objects, like last lecture’s tibble)
4, lists

Each of these object types is a different way to store data. Each can take numbers or characters. And you can
generally change the type of an object fairly easily. Plus, they all follow similar indexing rules,’ which is quite
nice.

While these object types have much in common, they each act slightly differently, so it is important to keep
track of your object types. Luckily, R provides us with the class() function, as well as dim() and length(),
which both help us figure out the type of data object we have. You can also check the “Environment” tab in
RStudio to see the objects that R currently holds in memory and their types.

First, check the class of a number

class(2)

[1] "numeric"

Now, let’s check the class of a string of characters
class("Max Auffhammer")

[1] "character"

!Check out Section 1 for more on indexing.

latexKnitr.html
latexKnitr.html
section01.html#indexing

3 Vectors

3.1 Numeric vectors

Vectors are more-or-less the basic building block in R. Vectors are one dimensional, and they only need one
element. One way to create a vector is using the c() (combine) function.

Create a vector called 'vec'
vec <- c¢(1, 2, 3, 4, 5)
Print the vector named 'vec'

vec
[11 12345

To create (consecutive) sequences of (natural) numbers, you can use the colon (:), e.g. 1:5. You can also
use the seq() function, e.g., seq(from = 1, to = 5) or seq(from = 1, to = 5, by = 1), which gives you
flexibility in the increments between numbers.

Create a vector of the sequence from 1 to 5 and store it as 'vec2'
vec2 <- 1:5

Print 'vec2'

vec2

[11 12345

Are the two vectors' elements equal?
vec2 == vec

[1] TRUE TRUE TRUE TRUE TRUE

Are the two vectors equal?
all.equal(vec, vec2)

[1] TRUE

Notice that using the double-equal sign (==) tests pairwise equality, while the function all.equal() tests
equality between the two vectors.?

Create another numeric vector
vec3 <- c¢(1, 2, 8:10)

Print it

vec3

[11 1 2 8 910

Check element-wise equality
vec == vec3

[1] TRUE TRUE FALSE FALSE FALSE

Check overall equality
all.equal(vec, vec3)

%You can also use the identical() function, which is probably more appropriate, but beware: it is very picky. For in-
stance, try as.integer(1l) == as.numeric(1l) and all.equal(as.integer(1l), as.numeric(1l)) compare the results to identi-
cal(as.integer(1l), as.numeric(1)). Picky! Might not always get you what you want. User beware.

[1] "Mean relative difference: 1.25"

3.2 Combining vectors

You can also create vectors out of vectors. The combine function c() simply concatenates the vectors.

Create a new vector by combining 'vec2' and 'vec3'
vec23 <- c(vec2, vec3)

Print the new vector

vec23

[11 1 2 3 4 5 1 2 8 910

Recall that vectors are one-dimensional. Let’s explore our vector a bit using the functions class(),
is.vector(), dim(), and length().3

The class function
class(vec23)

[1] "numeric"

The is.vector function
is.vector(vec23)

[1] TRUE

The dimension function
dim(vec23)

NULL

The length function
length(vec23)

[1] 10

Because vectors are one-dimensional, indexing the vectors requires only one input. Let’s grab the seventh
element of the vector vec23

vec23[7]

[1] 2

3.3 Character vectors

Finally, we can also create vectors of characters.*

Create the string vector using quotation marks
str_vec <- c("Aren't", "vectors", "exciting", "?")
Print it

str_vec

*Most object types/classes have an associated function like the is.vector() function. For example, is.numeric(), is.integer(),
is.character(), is.matrix(), and is.data.frame(), to name a few.
*Recall that we use quotation marks to create string/character vectors.

[1] "Aren't" "vectors" ‘"exciting" "?"

Check its class
class(str_vec)

[1] "character"

Check if it is a vector
is.vector(str_vec)

[1] TRUE

Grab the third element
str_vec[3]

[1] "exciting"

What happens when you combine a vector of characters with a vector of numbers (or create a vector of both
numbers and characters)?

Create a vector of the numeric vector 'vec' and the character vector 'str_vec'
mix_vec <- c(vec, str_vec)

Print the result

mix_vec

[1] "1" " "3 "4 "5" "Aren't"

[7] "vectors" ‘"exciting" "?"

Check the class of the new vector
class(mix_vec)

[1] "character"

4 Matrices

It’s matrix time.

4.1 matrix()

R’s matrix function is aptly named matrix(). We will generally feed the matrix function two arguments:*

1. data: the stuff inside the matrix

2. ncol: the number of columns®

To learn more about the matrix function, type ?matrix in your console (or in the “Help” tab of RStudio). This
help searching works for all loaded functions. If you do not find what you are looking for, try using two
question marks, ??matrix, which will perform a fuzzy search for the word.

>The matrix() function, in fact, requires only one argument: data. Without specifying ncol or nrow, matrix() returns a n x 1
matrix.
®Alternatively, you can use nrow and omit ncol. Or use both... or neither.

4.2 Creating matrices
Let’s make a matrix. Specifically, let’s make a 3 x 2 matrix filled with the numbers between 1 and 6. Following
Max’s notation, let’s call this matrix A.

Create a 3x2 matrix filled with the sequence 1:6
A <- matrix(data = 1:6, ncol = 2)

Print it
A
it [,11 [,2]

[1,] 1 4
[2,] 2 5
[3,] 36

What are the dimensions of A? What about its length? Is A a vector or a matrix?

The dimension of A
dim(A)

[1] 3 2

The length of A
length(A)

[1] 6

Check if A is a vector
is.vector(A)

[1] FALSE

Check if A is a matrix
is.matrix(A)

[1] TRUE

Finally, you can index any element of a matrix using its row and column. The way R prints matrices actually
shows you exactly how to reference the row, the column, or the exact element.

Print the matrix A
A

it [,1] [,2]
[1,] 1 4
[2,] 2 5
[3,1] 3 6

Print the second row of A
Al2,]

[1] 2 5

Print the second and third rows of A
Al[2:3,]

[,1] [,2]
[1,] 2 5
[2,] 3 6

Print the first column of A
Al,1]

[1] 1 2 3

Print the element in the second row and first column of A
Al2,1]

[1] 2

4.3 Transpose

Define B = A’. How can we manually make the transpose of A? It should be 2 x 3. Let’s try

Print A
A
it [,11 [,2]

[1,] 1 4
[2,] 2 5
[3,] 3 6

First attempt at B
B <- matrix(data = 1:6, ncol = 3)

Print B
B
[,11 [,2] [,3]

#[1,] 1 3 5
[2,] 2 4 6

Nope. The dimensions are correct, but we want the first row to be 1, 2, 3—not 1, 3, 5. To tell R to fill the
matrix by row, rather than by column (the default), use the argument byrow.

Using the byrow option
B <- matrix(data = 1:6, ncol = 3, byrow = TRUE)

Print B
B
#it [,11 [,21 [,3]

#[1,] 1 2 3
[2,] 4 5 6

That’s better.

R has a much simpler way to transpose matrices: the t() function. Feed a matrix to the t() function, and the
output will be the transpose of the matrix. Let’s verify.

Check element by element
t(A) ==

[,11 [,2] [,3]
[1,] TRUE TRUE TRUE
[2,] TRUE TRUE TRUE

Check if all the element-by-element comparisons are TRUE
all(t(A) == B)

[1] TRUE

Check if the transpose of A is identical to B
identical(t(A), B)

[1] TRUE

4.4 Multiplication

In R, the matrix multiplication command is %*%. Admittedly, this notation is a little strange,” but * is already
taken for scalar multiplication. Don’t get lazy here: R will still let you use * multiplication with matrices, but
it will be elementwise multiplication—not matrix multiplication.

As an example, here is the elementwise multiplication of A and itself, using the * operator

Print A as a reminder
A

#i# [,1] [,2]
[1,] 1 4
[2,] 2 5
[3,] 36

Elementwise multiplication of A and A
A * A

#i [,11 [,2]
[1,] 1 16
[2,] 4 25
[3,] 9 36

The matrix multiplication of A and itself is not defined because A does not conform with itself.

Matrix multiplication of A and itself

A %*% A

Error in A %*% A: non-conformable arguments

You can also multiply matrices by scalars using the * operator
A * 3

[,11 [,2]
[1,] 3012
[2,] 6 15
[3,] 9 18

’In case you are wondering: I did not choose this notation.

To see a matrix multiplication that actually works, let’s define a 2 X 2 matrix with the elements 1 through 4.
Call it C. Calculate A x C.

Create C
C <- matrix(data = 1:4, ncol = 2)
Multiply A and C

A %*% C

[,1] [,2]
[1,] 9 19
[2,] 12 26
[3,] 15 33

4.5 Identities and inverses

No discussion of matrices would be complete without identity matrices and inverses.

In R, we create identity matrices using the function diag(). The argument to diag() is the number of
rows/columns of the identity matrix. Because identity matrices are square, this argument is a single num-
ber.

For a 5 X 5 identity matrix,
diag(5)

[,11 [,2] [,3] [,4] [,5]
[1,] 1 06 0 0 0
[2,]
[3,]
[4,]
[5,]

e e @
= e ©

0 0
1 0
0 1
0 0

e 0 © =

Notice that if you apply the function diag() to an already-created matrix, it will grab the diagonal elements
of that matrix.

Grab the diagonal elements of the matrix C
diag(C)

[1] 1 4

R’s built-in function to take the inverse of a matrix is solve(). Give solve() an invertible matrix, and it will
return the inverse of the matrix.

Take the inverse of C
solve(C)

[,1] [,2]
[1,] -2 1.5
(2,1 1-0.5

Multiply C by its inverse
C %*% solve(C)

[,1] [,2]
[1,] 1 0
[2,] 0 1

The function det() will give you the determinant of a (square) matrix. To calculate the trace of a matrix, you
need to load the psych package. Within the psych package is a function called tr() that will calculate the
trace.

The determinant of a matrix
det(C)

[1] -2

The trace of a matrix using the psych package's tr()
library(psych)
tr(C)

[1]1 5

What is another way to calculate the trace of a matrix using tools we’ve already learned?
sum(diag(C))

[1] 5

Combining sum() and diag() will give the trace of a matrix.

4.6 Adding columns or rows

You will often want to add an additional row or column to your matrix. rbind() and cbind() bind rows and
columns onto existing matrices, respectively.

Remember the matrix A?

A

#i# [,1]1 [,2]
[1,] 1 4
[2,] 2 5
[3,] 3 6

Let’s add a column of ones in front of the matrix.

Bind a column of ones in front of the matrix A
cbind(c(1, 1, 1), A)

#i# [,11 [,2] [,3]
[1,] 1 1 4
[2,] 1 2 5
[3,] 1 3 6

What happens if we get a little lazy and type 1 instead of c(1, 1, 1)?

cbind(1, A)

10

#it [,11 [,2] [,3]
#o[1,1] 1 1 4
[2,] 1 2 5
[3,] 1 3 6

R recycles the data given to make the dimensions match. This feature can be very helpful, but it might occa-
sionally trip you up too. Be careful being lazy.

Now, let’s bind the vector c(3, 6) to the end (bottom?) of A.

rbind(A, c(3, 6))

#it [,1] [,2]
#o[1,] 1 4
[2,] 2 5
(3,1 3 6
[4,] 3 6

Finally, notice that you can bind matrices together (as long as the dimension match).

rbind(A, C)

it [,11 [,2]
#[1,] 1 4
(2,1 2 5
13,1 3 6
14,] 1 3
[5,] 2 4

5 Other tools

We do not have time to cover every function related to vectors and matrices, but here are a few more functions
(or uses of functions we covered) that may prove useful.

* crossprod() and tcrossprod() take cross products (e.g., A’ x B).

* solve() can also take two arguments, a and b, and returns the solution for x in the equation a %*% x
= b.

* eigen() gives the eigenvectors and eigenvalues of a matrix. eigen(A)$vectors will give you just the
eigenvectors of A, and eigen(A)$values will give you only the eigenvalues of A.

* You can give matrix() a single number and specify both ncol and nrow to fill a matrix with the same
number. For example, matrix(data = 1, nrow = 3, ncol = 5) creates a 3 X 5 matrix of ones.

* The function sample() will randomly sample a number of elements from a vector with or without replace-
ment (without replacement is the default). For example, sample(x = 1:100, size = 5, replace =
TRUE) will randomly draw five numbers from 1 to 100 with replacement. See ?sample for more in-
formation. You should set your seed to make sampling replicable. The function set.seed() sets the
seed.

11

	Admin
	What you will need
	Summary of last time
	Summary of this section

	Data structures in R
	Vectors
	Numeric vectors
	Combining vectors
	Character vectors

	Matrices
	matrix()
	Creating matrices
	Transpose
	Multiplication
	Identities and inverses
	Adding columns or rows

	Other tools

