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Abstract

We exploit a spatial discontinuity in two natural gas utilities’ service territory—combined
with variation in their block-rate pricing structure and a difference in how prima facie
determined wholesale prices are deferentially passed though to consumers—to identify
average, seasonal, and income-specific own-price elasticities of residential natural gas
demand. We estimate an average elasticity ranging from 0.15–0.19 depending on the
measure of price used. We further estimate that this elasticity varies substantially across
seasons, income groups, and their interaction. We find no significant difference in con-
sumers’ responses to average versus marginal prices.
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1 Introduction

Identifying and estimating structural parameters in demand and supply systems has greatly

progressed since Ezekiel (1925) and Working (1927) laid out the fundamental framework

of simultaneity (Wright 1928; Koopmans 1945; Girshick and Haavelmo 1947; Angrist and

Krueger 2001; Stock and Trebbi 2003). In the field of resource economics, much of the focus

has been on identifying a price elasticity of demand in the presence of block-rate pricing (e.g.,
Hanemann (1984), Olmstead, Hanemann, and Stavins (2007), Ito (2014)), with some recent

work focusing on heterogeneity in price response (e.g., El-Khattabi et al. (2021), Hahn and

Metcalfe (2021)).

Estimates of the price elasticity of demand are of first-order importance—not only to

consumers and firms but also to regulators—both in the short and long run. First, in market

settings where externalities exist, the welfare consequences of a policy intervention (e.g., a

carbon tax) depend on the long-run price elasticity. Second, in settings with significant fixed

costs—as is the case in the energy and natural-resource sectors—regulators choose between

recovering these fixed costs through fixed charges or through volumetric fees. Once again,

the welfare implications of this decision hinge upon the elasticity of demand. The short-run

elasticity of natural gas demand is both important for price-regulated utilities’ procurement

planning, but also from a short-run public policy perspective. For example, the optimal

response to the supply crisis in Europe’s natural gas supplies due to the war in Ukraine hinges

critically on the magnitude of the short-run elasticity.

Further, customers’ responsiveness to prices can vary both across customers’ characteristics

(e.g., income) and time. Because the welfare effects of policy, regulation, and taxation depend

upon customers’ price responsiveness, estimating and understanding these heterogeneities is

important, especially as policy making in the energy space is increasingly concerned with the

distributional and justice consequences of policy choices.

Economists have long studied time-varying pricing. Examples of settings where such

time-varying pricing may actually improve welfare abound— especially in the areas of elec-

tricity demand and transportation. Designing optimal and fair time-varying pricing structures

requires causal estimates of group- and time-specific price elasticities—a task that is often

difficult due to the data and exogenous variation required to identify temporally and cross-

sectionally heterogeneous consumption responses.

This paper is an effort to fill this gap for the main source of residential energy in North

America: residential natural gas. In 2016, natural gas surpassed coal as the main source of

energy for electricity generation in the United States. Furthermore, half of US residences

use natural gas as their main heating fuel (U.S. Energy Information Administration 2016b).

Depending on the severity of the winter, US residential consumers spend 50-80 billion dollars

per year on natural gas. The average household spends about as much money on natural gas

as it spends on water (BLS 2017; U.S. Energy Information Administration 2016b).

We exploit access to the universe of natural gas bills for the two biggest investor-owned
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utilities in California to econometrically identify the own-price elasticity of demand by zoom-

ing in on areas in which natural gas prices discontinuously change due to arbitrary, historical

network boundaries. Our approach uses the same spatial discontinuity approach as Ito (2014).

However, the natural gas market setting differs in two major ways from the market for resi-

dential electricity. First, natural gas is priced on a two-tier block-rate structure. In the case of

electricity, the bottom tier is fixed and variation arrives in the form of up to seven-tier changes

over time from utility-specific rate cases filed with the regulator. Second, utilities are allowed

to shift both tiers month by month in order to pass though variation in lagged procurement

costs driven by changes in the wholesale cost of gas. Electricity prices on the other hand are

infrequently updated as a consequence of rate cases. Finally, utilities rely on different sources

of natural gas for their procurement.

This setting requires that we build on Ito (2014) and augment his identification strategy,

as the two-tier pricing structure provides very limited variation as both the width of the blocks

as well as the price difference between them vary infrequently. In addition to the geographic

boundary, we construct a price instrument by interacting this spatial discontinuity with pre-

determined exogenous variation in the upstream spot market (Henry Hub) for natural gas—in

order to introduce exogenous time-series variation in prices. We use the fact, and confirm in

a first stage, that there is differential pass through of this exogenous to the consumer lagged

wholesale price, which provides additional variation on the two sides of the utility territories.

Taken together, the spatial discontinuity, differential pass through and standard variation in

bill beginning and end dates allow us to provide precise and causal estimates of the own-price

elasticity of demand.

In what follows, we provide a well-identified medium-run (two month) “average price

elasticity”, which we then decompose into the price elasticity of demand by season, by in-

come, and by their interaction. Our results demonstrate that consumers are much more

price sensitive in cool months (when households heat), and this difference is economically

and statistically significant. We show suggestive evidence that lower-income households are

more price sensitive than their more-affluent counterparts with sizable differences in the

point estimates. However, the coefficients are not statistically different across these groups.

Finally, we show that the largest point estimates for the price elasticity of demand are for

lower-income households in cool months. On their own, these heterogeneous elasticities are

key to understanding an important component of household behavior—they paint a very dif-

ferent picture than that of a single, pooled elasticity. For instance, pooling across households

and seasons, our estimate of the marginal price elasticity of demand for residential natural

gas is approximately −0.17, but our season-by-income estimates range from unresponsive

(affluent households in warm, non-heating months) to −0.46 (lower-income households in

cool, heating months). Our estimates are robust to an extensive barrage of specification tests

and different applications and sources of identifying variation. We also provide estimates

for different measures of price. We find no evidence that the response to marginal price is
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different from that to average price, which is likely due to the relatively small size of the “step”

increase in the natural gas tier.

While quantifying heterogeneity is important on its own, in this setting our results open

a new avenue for a welfare-enhancing and progressive policy change, which can easily be

implemented by state utility regulators. Specifically, if utilities and governments shift small

program fees currently charged on a volumetric basis throughout the year to more inelastic

periods of the year (non-heating months in our context), consumers would suffer less dead-

weight loss—and the reduction in deadweight loss is potentially higher for poorer households.

Such a switch is especially plausible in the context of natural gas, as many utilities and gov-

ernments already apply seasonal changes in the pricing structure of residential natural gas to

respond to seasonal changes in the demand for heating.

2 Institutional setting

A basic understanding of the institutional and physical setup of the natural gas sector in the

United States is helpful for understanding our identification strategy. This market is commonly

divided into four segments: (1) production and processing, (2) transportation, (3) storage,

and (4) local distribution companies (LDCs). Figure 1 illustrates the basic institutional or-

ganization of the natural gas industry.1 The four segments we discuss below roughly follow

Figure 1 except that they exclude end users (those users who only consume natural gas) and

the liquid natural gas import/export-based segments of the market. While we focus on the

behavior of residential natural gas consumers, part of our identification strategy relies upon

a basic understanding of the wider industry—specifically in understanding which factors may

shift supply without affecting demand.

2.1 Market segments

Production and processing Natural gas enters the market at the wellhead, where it is

produced and first sold (Brown and Yücel 1993). Some wells produce only natural gas, while

other wells produce natural gas in addition to crude oil. The raw product then moves from

wellheads to processors. Processors remove impurities and separate the raw product into

multiple commodities (Levine, Carpenter, and Thapa 2014).

Transportation High-pressure pipelines transport processed natural gas from production

and processing areas to both intermediate users (storage facilities, processors, LDCs) and

1. We include liquid natural gas (LNG) in the figure for completeness, but liquid natural gas does not play a
large role in the natural gas market in the United States: LNG imports currently account for less than one percent
of natural gas imports and accounted for three percent of imports at their peak in 2007 (Levine, Carpenter, and
Thapa 2014). For this reason, we omit LNG for the rest of the paper.
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final users (electricity generators, industrial users, commercial users, and residential users).2

Extensive spot markets and futures markets sit at the major hubs along this pipeline. Notably,

Louisiana’s Henry Hub connects to 13 intrastate and interstate pipelines. The Henry Hub

is the designated delivery point for the New York Mercantile Exchange’s natural gas futures

contracts, and the Henry Hub price is generally regarded as one nationally relevant price

(Levine, Carpenter, and Thapa 2014). Figure 2 depicts the Henry Hub spot price from 1997

through 2016. In general, transportation costs represent a substantial percentage of natural

gas prices.3 Thus, the natural gas transportation network creates a nationally integrated

market and simultaneously contributes to a sizable portion of the prices paid by natural gas

end users.

Storage Storage plays a major role in several parts of the natural gas market, but all parties

store mainly for the same reason: volatility within the market. Due to its major role in

heating and electricity production, natural gas demand is strongly driven by weather and

can be unpredictable in the short run. To combat price volatility and to be able to meet

peak demand, both local distribution companies and large natural gas consumers store gas

underground. Producers utilize storage to smooth production.

Local distribution companies Local distribution companies’ primarily distribute natural gas

to their contracted end users—industrial, residential, and commercial consumers of natural

gas. To accomplish this task, LDCs purchase natural gas through both spot markets and

longer-term contracts. In addition, LDCs own and operate their own pipeline and storage

networks. To cover the fixed costs involved in their pipelines, storage, and administration,

LDCs often utilize a combination of two-part tariffs and multi-tiered pricing regimes—though

some utilities fold all of their costs into their volumetric pricing. State utility commissions

(e.g., the California Public Utilities Commission) regulate LDCs’ price regimes, allowing the

LDCs to earn a regulated rate of return (Brown and Yücel 1993; Davis and Muehlegger 2010;

Levine, Carpenter, and Thapa 2014).

2.2 Natural gas pricing in California

The California Public Utilities Commission (CPUC) regulates the two utilities from which we

draw data: Pacific Gas and Electric Company (PG&E) and Southern California Gas Company

(SoCalGas). Because we analyze residential natural gas consumers’ responses to natural-gas

2. Figure A1 maps this pipeline network for the continental United States. Private companies own and operate
segments of the pipeline; these pipeline companies’ rates are regulated at the state level and the national level
(Levine, Carpenter, and Thapa 2014).

3. According to Levine, Carpenter, and Thapa, in 2011–2012, 72 percent of consumers’ average heating costs
originated in “transmission and distribution charges”. They also note that in 2007–2008 “transmission and
distribution charges” accounted for 41 percent of consumers’ average heating costs.
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retail prices, the most relevant regulations facing PG&E and SoCalGas are the CPUC’s price

and quantity regulations.

For households served by PG&E or SoCalGas, a bill depends upon five elements:

1. The two-tiered price schedule set by the utility

2. The total volume of natural gas consumed during the billing period

3. The season (summer or winter) in which the bill occurs

4. The climate zone into which the household’s physical location falls, as defined by the

California Energy Commission (CEC) (see Figure A3),

5. The household’s CARE (California Alternate Rates for Energy) status, which provides

a 20% discount to households whose income falls below pre-specified income thresholds

or are enrolled in certain public assistance programs.

Figure A4 provides an example of a typical residential natural gas bill from PG&E.

Both PG&E and SoCalGas utilize two-tiered pricing regimes. The California Energy Com-

mission divides California into 16 climate zones in which households’ needs for heating

should be relatively homogeneous (California Energy Commission 2015, 2017; Pacific Gas

and Electric Company 2016). The utilities also divide the year into heating (winter) and

non-heating (summer) seasons. Based upon a household’s climate zone (determined by the

household’s location) and the season, the CPUC determines a volume of natural gas that

should be adequate for heating during the course of one day. This volume of natural gas is

called the household’s daily allowance. Multiplying the household’s daily allowance by the

number of days in the billing period gives the household’s total allowance for the bill. For each

unit (therm4) of natural gas up to the bill’s total allowance, the household pays the first tier’s

per-unit price (baseline price). For each unit of gas above the household’s total allowance, the

household pays the second tier’s per-unit price (excess price). Figure 3a illustrates an exam-

ple of the two-tier block-pricing regime used by PG&E and SoCalGas. Figure 3b depicts how

residential consumers’ (daily) tier-one allowances vary through time within a given climate

zone (PG&E’s climate zone R and SoCalGas’s climate zone 1).

In terms of variation employed later in the paper, it is important to note that consumers’

billing periods do not perfectly align with calendar months. The beginning date of the bill is

fully dependent on the day of the month the account was opened, which for most households

does not coincide with the first of the month. We have checked for bunching of bill beginning

days and find a pretty uniform distribution across days of the month. However, PG&E’s

and SoCalGas’s price changes do align with calendar months. The two utilities deal with

this misalignment of billing periods and price regimes slightly differently. PG&E calculates

individual bills for each calendar month under the assumption that consumption is constant

throughout the billing period. SoCalGas calculates a single bill using time-weighted average

4. The utilities work in units of volume called therms. One therm is equal to 100,000 Btu (U.S. Energy
Information Administration 2016c).
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prices (averaging across the different price regimes). These methods are equivalent under

a single linear price but differ under the actual multi-tiered price regimes. Please see the

Calculating bills section in the appendix for more detail.

If retail prices were not updated month to month, as is the case for electricity for most

of California’s customers, we could not write this paper. We use the fact that each month,

the natural gas utilities are permitted by regulators to update their block price schedules.

The absolute difference between the first-tier price and the second-tier price also varies but

tends to remain constant for several months.5 These monthly price changes allow the utilities

to charge customers at rates that reflect the lagged prevailing price of natural gas in the

wholesale markets they procure gas from. In fact, the utilities tie their price updates to

their costs—thus linking residential rates to lagged spot market prices.6 If the utilities wish

to change the formula with which their prices are tied to market prices and other costs, they

must receive authorization following a review process with CPUC. Figure 5a illustrates these

monthly price-regime changes and the fairly fixed step between the two tiers. Figure 5b

depicts the correlation between the utilities’ baseline (first-tier) prices and the spot market

price of natural gas at the Henry Hub, which is significant.

At the insistence of a reviewer, we thankfully engaged in several conversations with natural

gas experts at the CPUC, who reaffirmed that price variation month to month is significant

and that what gets passed through (e.g., how much of Henry Hub price variation) may differ

for the two utilities. Perhaps the biggest factor is the regional difference in prices for the gas

they buy, as the two utilities procurement portfolios differ (PG&E procures a lot of supply

from Canadian basins; SoCalGas procures supply from basins located in the Southwest of the

US). Secondly, each investor-owned utility also engages in market practices to decrease core

commodity costs, which include purchasing different kinds of gas contracts, park and loan

programs, price arbitrage, and selling excess gas into the market. Many of their contracts are

based on the first-of-month Henry Hub index price, but not all of them. The Henry Hub price

hence plays a significant role for both utilities’ procurement and ultimate pricing strategy,

yet the degree to which Henry Hub matters varies across the two suppliers. In fact, for our

identification strategy, the fact that Henry Hub price is passed through differentially is a key

source of variation we use for identification of the price elasticity of demand.

Finally, a household’s participation in the CARE (California Alternate Rates for Energy)

program affects the prices that the household faces. Customers that are enrolled in the CARE

program receive a 30-35 percent discount on their electric bill and a 20-percent discount

on their natural gas bill. Households qualify for CARE by either meeting low-income quali-

fications or receiving benefits from one of several state or federal assistance programs (e.g.,
Medi-Cal or the National School Lunch Program) (Southern California Gas Company 2016).

CARE prices are 80 percent of standard prices at both tiers. In a recent paper, Hahn and Met-

5. The utilities differ in the frequencies at which they change this absolute difference: PG&E adjusts the distance
between the two tiers’ price much more frequently than SoCalGas.

6. The utilities report their weighted average costs of gas to the CPUC.
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calfe (2021) exploit the fact that some household’s enrollment lapses and use a randomized

encouragement design to estimate the price elasticity of demand for these customers, with

their central estimate being −0.21. Our paper trades in the excellent experimental design for

an ex post observational design in order to identify a residential price elasticity for CARE and

non-CARE customers. Throughout the paper, we will often refer to the elasticity of the CARE

customers as “low-income”, which implies that either the income threshold of the program is

met or the household is enrolled in one of the eligible public assistance programs. One could

be concerned about whether households that are eligible are actually signing up for the CARE

program. In their appendix table A2, (Hahn and Metcalfe 2021) estimate the share of eligible

customers that are signed up for CARE. For the two utilities in our paper they estimate that

84% of eligible customers do indeed sign up for CARE. This is encouraging. To be clear: when

we use the phrase “low income”, it explicitly refers to households who have enrolled in CARE.

3 Data

3.1 Natural gas billing data

Our billing data come from two major utilities in California: Pacific Gas and Electric Company

(PG&E) and Southern California Gas Company (SoCalGas). The PG&E data cover all residen-

tial natural gas bills in PG&E’s territory from January 2003 through December 2014. The

SoCalGas data cover residential natural gas bills from May 2010 through September 2015.

Thus, the two utilities’ data overlap from May 2010 through December 2014. After excluding

zip codes with fewer than 50 households, PG&E’s service area covers 597 5-digit zip codes,

with a total of 5,888,276 households and 180,663,705 bills. After excluding zip codes with

fewer than 50 households, SoCalGas’s service area covers 611 5-digit zip codes, with a total

of 2,526,503 households and 95,335,393 bills.

The left panel of Figure 4 depicts PG&E’s and SoCalGas’s service areas at the 5-digit zip

code level. Table 2 provides a brief summary of the billing data with regard to the numbers

of bills, households, zip codes, and monetary values of the bills. Tables 2 and 3 summarize

prices, quantities, and other variables of interest—pooling across all observations and also

splitting the data by season or CARE status. Both tables summarize the full dataset—all zip

codes across both utilities– as well as the subset of the data used in our preferred estimation

which limits the sample to all 5-digit zip codes served by both utilities. We describe this subset

in further detail below.

The utilities’ billing data are at the household-bill level: a single row of the dataset repre-

sents a single billing period for a given household. Table A17 describes the variables (columns)

in this dataset. We follow the natural gas utilities’ convention in defining a household (or

customer) as the interaction between a unique utility account and a unique physical location

identifier. It is important to note that there is variation in the beginning and end dates (and

hence bill lengths) across households, which depends on the day of the month the account
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was opened.

We also scraped historical data on pricing from the two utilities off their websites as well

as CPUC documentation. As described above, these pricing data include (1) each utility’s

monthly two-tier pricing regime and (2) the daily allowance for each climate zone during

each season. After joining these pricing data to the households’ billing data, we are able to

determine both the marginal price and average price (and average marginal price) for each

bill received by each household. We checked whether we could replicate the bill totals for

each bill using our scraped data and declare success.

3.2 Wholesale Prices

Daily data on wholesale gas prices come from (U.S. Energy Information Administration

2016d) and are reported in dollars per million BTU. Figure 2 displays the time series of prices

over the time of our sample. There is significant variation day to day, which we exploit in the

first stage of our analysis that follows.

3.3 Weather data

Data on daily weather observations originate from the PRISM project at Oregon State Univer-

sity (PRISM Climate Group 2004). We match these local, daily weather data to the household

consumption data at the day by 5-digit-zip-code level. The PRISM dataset contains daily

gridded maximum and minimum temperatures for the continental United States at a grid cell

resolution of roughly 2.5 miles (4 km). Figure A5 maps a single day of average temperature

from the PRISM data for the continental United States.

We observe these daily data for California from 1980–2015. In order to match the weather

grids to zip codes, we obtained a GIS layer of zip codes from ESRI (Esri 2017), which is based

on US Postal Service delivery routes for 2013. For small zip codes not identified by the shape

file, we purchased the centroid latitude and longitude of these zip codes from a private vendor

(zip-codes.com). We matched the PRISM grids to the zip code shapes and averaged the daily

temperature data across multiple grids within each zip code for each day. For zip codes

identified as a point, we use the daily weather observation in the grid at that point. This

exercise results in a complete daily record of minimum and maximum temperatures—as well

as precipitation—at the zip-code level from 1980–2015.

4 Empirical strategy

We now describe our empirical strategy to identify the price elasticity of demand for residential

natural gas consumers. First, we present the basic estimating equation that motivates the

paper’s results. Next, we discuss the inherent challenges to identification in this setting. We
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then discuss potential solutions to these challenges and detail which of these solutions are

feasible in our specific setting.

4.1 Estimating equation

The relationship at the heart of our elasticity estimates is

log(qi,t) = η log(pi,t) + λi,t + εi,t (1)

where i and t index household and time, q denotes quantity demanded, and p denotes price.

Rather than choosing a specific type of price (e.g., marginal), we present results for five

variants of price. These five types of price include the price that classical economic theory

deems relevant—the marginal price—in addition to average price, average marginal, baseline

(first-tier) price, and simulated marginal price (defined and discussed below). We define

average marginal price as the quantity-weighted marginal price paid by a customer during her

billing period. A single billing period may contain multiple marginal prices, as the block rates

are updated on the first of each month and most bills do not begin and end on the first and last

day of each month. Average marginal price does not include fixed charges, while average price

does. In the results section, we also discuss which lag of price is most salient to consumers.

The term λi,t represents household fixed effects, time-based fixed effects, and/or household-

by-time fixed effects—depending on the specification. Our main specification uses household

fixed effects and city by month-of-sample fixed effects (e.g., Fresno in January 2010; also

called city by year by month). A causally identified estimate of η yields the own-price elasticity

of demand.

4.2 Challenges to identification

In settings where researchers must rely on highly aggregated data on prices and quantity

there is endogeneity resulting from the simultaneous determination of price and quantity

that resolves the supply and demand equilibrium (e.g., Woolridge 2009), which we overcome

by using household level consumption data and by showing that households respond to

lagged prices. However, assuming that the price households face in a given billing period

is exogenous is wrong, since the two-tiered price schedule within California’s natural gas

market makes the marginal price a weakly increasing, monotonic function of quantity. For the

same reason, average price is also a function of quantity. Thus, when a household consumes

more, its marginal and average prices mechanically increase. In terms of identifying the

price elasticity of demand, this price variation is bad variation: the marginal price that a

household faces is endogenous because it is correlated with unobserved demand shocks (Ito

2014). This bias resulting from marginal and average prices being a function of quantity

results in upwardly biased estimates of demand elasticities, possibly yielding estimates that

suggest upward-sloping demand curves.
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Table 5 demonstrates the consequences of failing to address these challenges to identifica-

tion by estimating the price elasticity of demand—η in equation 1 via ordinary least squares

(OLS) using marginal price (columns 1–3). Each column varies the set of controls. Column

(1) applies the simplest set of controls to a full 5% sample of all bills in the sample. The “iden-

tification strategy” presented in Table 5 makes no attempt to correct for endogeneity outside

of a fairly rich set of fixed effects—household fixed effects and city by month-of-sample fixed

effects. All regressions control for within-bill heating degree days (HDDs) during the billing

period.7 Columns 2 and 3 subset the data to the ZIP codes containing our border-discontinuity,

in which we keep all zip codes where the zip code receives natural gas from both PG&E and

SoCalGas (discussed in detail below; also see Figure 4).

The fact that all marginal-price based elasticity estimates are positive (implying upward-

sloping demand curves) suggest that the fact that price is a function of quantity is a first order

concern here, which is not surprising.

4.3 Identification Strategy

Having confirmed that and OLS regression of quantity on price at the household level does

not cleanly identify the own-price elasticity of demand in this setting, we now discuss our

route for identifying the causal effect of price on quantity in our setting.

4.3.1 Discontinuities

A common path toward identification in applied microeconomics involves finding relatively

small geographic units that receive different exogenous treatments within the same time

period. The assumption is that observable and unobservable characteristics and, more impor-

tantly, households’ price responsiveness do not differ across the border, yet they are exposed

to different supply side driven price changes, allowing for econometric identification. Arbi-

trary administrative boundaries that determine policies’ catchment areas provide a popular

tool in this context, e.g., Dell (2010), Chen et al. (2013), and Ito (2014).

We exploit the boundary between PG&E and SoCalGas, as it offers arbitrary within-city

(and within-zip code) variation in prices during a month. Specifically, the boundary between

PG&E’s and SoCalGas’s natural gas service areas bisects eleven cities—in three clusters—in

southern California: Arvin, Bakersfield, Fellows, Fresno, Del Ray, Fowler, Paso Robles, Selma,

Taft, Tehachapi, and Templeton. The left panel of Figure 4 displays the two utilities’ service

areas throughout California (with sufficient coverage in our billing data). The right panel of

Figure 4 zooms in on the eleven cities (39 zip codes) that PG&E and SoCalGas both serve.

Within these eleven cities, PG&E serves all 39 zip codes, while SoCalGas serves 18 of the zip

7. The number of heating degrees in a day is equal to the difference between the day’s average temperature
and 65. Days with average temperatures above 65◦F receive zero heating degrees. More formally, we calculate
the number of heating degrees for day t with mean temperature T̄t (in ◦F) as HDDt = 1

{
T̄t < 65

}
×
(
65 − T̄t

)
. The

HDDs variable above is thus HDDS =
∑

t HDDt/1000.
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codes. It is important to note that we know that a household is located within a given ZIP

code, but we do not know where exactly, which prevents us from “zooming in” at the street

level and directly comparing neighbors.

This identification strategy rests upon the assumption that households on one side of the

utilities’ border provide a valid control group for households on the other side of the border.

In other words, households on both sides of the border are identical and experience the same

demand shocks (e.g., temperature or income shocks). Because the boundary mainly repre-

sents the extent of each utilities’ underground distribution network and is unlikely to enter

into households’ preferences, the exogeneity of the boundary to household characteristics is

likely to be valid, as extensively shown by (Ito 2014). The main threat to this identification

strategy, as he discusses, is that utilities’ networks correlate with geographic or neighbor-

hood characteristics over which individuals have preferences’. However, we use household

fixed effects, which absorb time invariant observable and unobservable differences across

households.

Figure 5b suggests the generating distributions for the utilities’ prices are quite similar

(the standard deviations of the price series are 0.0940 and 0.1053 for PG&E and SoCalGas,

respectively). In addition, Table 4 provides some limited evidence of balance across the

utility border, comparing PG&E and SoCalGas households within season (summer or winter)

and within income group. We remind the reader that we use income status synonymously

with CARE status. Figure A7 provides evidence of the relationship between CARE status and

income. Within a season-income group, the utilities’ customers appear to consume similar

volumes of natural gas, receive similar numbers of days per bill, receive similar allowances

on the first tier, and face similar numbers of heating degree days. SoCalGas customers tend

to receive slightly lower bills, but the difference is less than half of one standard deviation

of total bill amount. Figure A2 illustrates the relevant natural-gas and electricity service

areas. Notably, the border between PG&E’s natural-gas service area and SoCalGas’s natural-
gas service area is covered entirely by PG&E’s electricity service area. This overlap allows

for neighboring households to receive natural gas from two different utilities, while only

receiving electricity from PG&E.

Ito (2014) employs a similar strategy within the context of electricity consumption. How-

ever, there is at least one significant difference between the electricity and natural gas contexts

that prevents us from entirely adopting Ito’s identification strategy, which relies on discon-

tinuities within electricity utilities’ seven-tier pricing regime. By law, the electricity utilities

in Ito’s study cannot change the prices of their first two tiers—they must recover changes in

their costs by moving tiers three through seven. In addition, electric utilities in California

generally do not change consumer’s prices each month—and prices do not change across all

utilities at the same time. Thus, marginal prices in Ito’s setting move differently depending

upon a household’s tier and utility after a rate case has passed. Ito argues that the residual

variation—combining the spatial discontinuity with this pricing discontinuity and spatiotem-
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poral fixed effects—is plausibly exogenous from demand shocks. In our natural gas setting we

only have the benefit of two tiers and we lack significant variation in the absolute difference

between the two tiers which powers Ito’s results. Consequently, we need to supplement this

utility-border-based discontinuity by exploiting an additional source of exogenous variation

to power our estimates, which we discuss next.

4.3.2 Instrumental variables

Due to the way natural gas utilities are regulated in California, they are allowed to pass

through procurement costs (e.g., wholesale prices) from the last week of the previous month to

consumers for the coming month. Hence variation in wholesale prices provides a significant

source of variation in the prices that consumers face on both sides of the utility border.

This would not be useful, if both utilities passed wholesale prices through using the same

formula, but fortunately for us, they do not. We exploit the fact that wholesale prices from

the previous month are (1) strongly correlated with the prices that the natural gas utilities

charge their customers (the first stage), and (2) uncorrelated with residual shocks affecting

consumers’ demand as they are temporally disconnected (Angrist and Pischke 2009). Our

specific instrument, which injects differential variation on each side of the border, is based

upon the Henry Hub spot price for natural gas, which is one important source of cost for both

utilities as we discussed above.

Henry Hub spot price Specifically, we instrument the prices that consumers face (e.g.,
marginal price, average price, baseline price) with the average spot price at Louisiana’s Henry

Hub in the week preceding the change in prices, which matches the rule the utilities have to

adopt. While the pass-through formula is not solely based on the Henry Hub price—it is the

price of a variety of sources of gas—we interact the Henry Hub spot price with utility to allow

the utilities to differentially pass through this wholesale price change. The Henry Hub spot

price represents a nationally prevailing price for short-term natural gas contracts as the hub

sits at the intersection of thirteen intrastate and interstate pipelines (U.S. Energy Information

Administration 2016a).

We argue that the necessary exclusion restriction for this spot-price based instrument is

plausibly valid. First, we interact the spot price instrument with utility. This interaction,

conditional on city by month-of-sample fixed effects, means that the identifying variation in

our instruments comes from the difference in how the two utilities’ pass monthly Henry Hub

spot-price shocks on to their consumers. As discussed in section 2, this is due to how the two

utilities procure gas and the relative importance of the Henry Hub price in their procurement

portfolio. The CPUC-approved pass-through further is assumed to not correlate with demand

shocks within a city (or zip code) because of the disconnect in timing. Additional plausibly

exogenous variation in residential prices across households and time within a given city and
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utility comes from the different days on which households’ bills begin.8

It is important to stress how timing shuts down the much-feared classical simultaneity

channel. As the spot price is temporally disconnected from the billing period the utilities’ costs

(and approved prices) are based upon spot prices that precede the billing period by several

weeks. Thus, shocks that affect the Henry Hub spot price are distinct in time from shocks that

affect natural gas demand—our fixed effects will absorb any of these shocks, so long as they

do not differ across the utilities’ border within a month.

The next important point that needs to be clarified is which lag of price is the salient one.

We show that the most salient lag of price is the second lag of price, further disconnecting

contemporaneous local demand shocks from market-level supply shocks two months prior.9

We also control for the number of heating degree days (HDDs) in the household’s zip code

during the households’ billing period. Because residential consumers primarily use natural

gas in heating applications, controlling for HDDs further reduces the opportunity for local

demand shock to affect national prices.

One final exclusion-restriction concern is that price variation in the spot market for natural

gas may affect both residential natural-gas prices and residential electricity prices. In this

scenario, we would not be able to separate the effect of an electricity price shock from a

natural-gas price shock. However, in addition to the institutional setup that rules out this

channel, Figure 7 supports our argument that (1) residential natural gas and electricity prices

are uncorrelated in both levels and differences (across the utilities’ border within a month of

sample), and (2) variation in the residential price for electricity is uncorrelated with variation

in the Henry Hub spot price of natural gas.10 Therefore, we argue that the exclusion restriction

is plausibly valid for our spot-price instrument.

Our identification strategy thus interacts the spatial discontinuity between PG&E’s and

SoCalGas’s service areas with the Henry Hub spot price. Specifically, the identifying variation

stems from the two utilities’ divergent pass-through of the spot market price—differentially

projecting variation in the natural gas spot market across a tenably arbitrary border between

the two utilities. The border discontinuity ensures that we compare similar (neighboring)

households. The spot-market pass-through instrument generates arbitrarily different exoge-

nous prices for these neighboring households. Variation in the day-of-month on which a

households bills begin provides additional plausibly exogenous variation at the household

level—though our results do not depend upon this additional source of variation. Finally,

the temporal separation between utilities’ price changes (reflecting the upstream market)

and consumers’ demand decisions lends further credibility to this design’s ability to separate

supply shocks from demand shocks.

8. Our results are robust to eliminating this additional source of variation, i.e., treating all households within a
city-utility to the same price within a month of sample.

9. See Tables 7, A3–A6 for the second-stage results comparing consumers’ responses to various lags in price.
10. This observation also draws upon Figure 5b.
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Spot price IV, first stage Panel A of Table 6 provides the first-stage estimates for the two-

stage least squares (2SLS) equations

log
(
pi,t
)
= π1a pspot

i,t + π1b pspot
i,t × SCGi + π2HDDbill

i,t + HHi + Cityi,t + ui,t (2)

log
(
qi,t
)
= η1

̂log
(
pi,t
)
+ η2HDDbill

i,t + HHi + Cityi,t + vi,t (3)

where HHi is a household fixed effect, Cityi,t is a city by month-of-sample fixed effect, SCGi is

an indicator for whether the household’s retail utility is SoCalGas, and HDDbill
i,t is the number

of heating degree days for household i during its billing period that began in month t.

While the utilities update their prices pi,t for each calendar month, households’ bills of-

ten straddle two calendar months—and consequently two pricing regimes—which gives the

household a time-weighted average of prices for the months its bill straddles (see Figure 6).

We construct the spot-price instrument pspot
i,t to correspond to this pricing policy—calculating

the weighted average of the relevant months’ spot prices.11 Consequently, the spot-price in-

strument pspot
i,t is not collinear with the city-by-month-of-sample fixed effects: within a given

city-utility-month, there is residual variation in prices (spot and retail) due to staggered bill

start dates.12

Figure 5b provides visual evidence of the first stage—illustrating (1) the strong link be-

tween the two utilities’ prices and the Henry Hub spot price and (2) the utilities’ differential

responses to the spot price. Notably, SoCalGas’s price series appears to track the spot-market

price for natural gas more closely than PG&E’s price series. Throughout the rest of the paper,

we define the Henry Hub spot price as the average spot price for natural gas at the Henry Hub

during the seven days preceding the utility’s change in pricing.

Panel A of Table 6 displays the first-stage results for equation 2 using five different prices

that may be relevant to households: marginal price, average price, average marginal price,

baseline price, and simulated marginal price13 (using the log of each price). Each price is the

second lag of the contemporaneous price.14 Table 7 and Tables A3–A6 compare consumers’

varying responses to different lags of price.

Both Figure 5b and Panel A of Table 6 demonstrate that the spot-price based instruments

are quite strong: the F statistics testing the joint significance of the instruments range from

369.9 to 1,333.2. This significance is unsurprising because the utilities purchase gas on the

spot market and incorporate these costs directly into their price regimes. The significance

11. Weighting the months’ spot prices by their temporal share of the bill. See the appendix section Calculating
bills for further discussion of bills spanning multiple months.

12. We can drop the within city-utility-month variation induced by the staggered bill start dates by assigning
bills the price (a) at the start of the billing period or (b) for the month in which the bill spends the majority of its
time. These changes do not notably change the results. We include this variation because it better matches the
actual mechanisms generating variation in the first stage.

13. Simulated marginal price refers to a simulated instrument for marginal price. We discuss this measure of
price in the next section.

14. The current bill is lag zero, the prior bill contains the first lag of price, and the bill preceding the prior bill
contains the second lag of price.
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of the interaction between spot price and utility (SoCalGas) in the second row of Panel

A in Table 6 confirms that the utilities differ appreciably when incorporating spot-market

costs into their pricing regimes: PG&E’s pricing regime appears to be much less responsive

to the contemporaneous spot price than that of SoCalGas, matching the observation from

Figure 5b above.15 Though the city-by-month-of-sample fixed effect should control for most

local demand shocks, bills do not perfectly match months. The within-bill HDDs variable

HDDbill
i,t in equation 2 controls for any remaining weather-based demand shocks. The results

in Table A9 demonstrate robustness to excluding (odd-numbered columns) or including (even-

numbered columns) within-bill heating degree days, which suggests that the instrument is

exogenous to local weather shocks, one of the key local-demand drivers in natural gas (Davis

and Muehlegger 2010; Levine, Carpenter, and Thapa 2014; Hausman and Kellogg 2015).

4.3.3 Instrumented prices and simulated instruments

In the preceding sections, we discussed how we interact a spot-price–pass-through-based

instrument with a spatial discontinuity in utilities’ service area. We now discuss one additional

level of our identification strategy that directly deals with the price-is-a-function-of-quantity

endogeneity present in multi-tiered pricing contexts.16 We present three separate options for

breaking this endogenous link between price and quantity, but, in the end, the options yield

very similar results.

Option 1: Instrumented prices One option is simply to instrument the household’s price

with a variable that is aggregated at a unit above household. Consider the IV strategy dis-

cussed above: instrumenting a household’s price with the Henry Hub spot-price interacted

with utility. Because this instrument only varies at the level of billing-period by utility, when

we regress a household’s endogenous price on this instrument (and our set of fixed effects)

in the first stage, the variation captured by the predicted prices is only the variation that cor-

relates with the spot price, which is determined weeks, if not months, before the household’s

consumption decision.

Option 2: Baseline price In a similar manner, the baseline price provides a valid instrument

that breaks the price-is-a-function-of-quantity endogeneity. Because a household’s baseline

price is not a function of its quantity consumed, baseline price does not suffer from the same

endogeneity. Baseline price is also strongly predictive of marginal (or average) price.17 Thus,

in application, one could either replace marginal (or average) price with baseline price or

15. One difference between the utilities’ pricing regimes is that PG&E does not have a fixed charge, while
SoCalGas does. Thus, PG&E recovers both fixed and volumetric costs through volumetric charges to its customers.

16. This endogeneity is present in marginal price, average price, and average marginal price—all three prices
are functions of the individual household’s quantity consumed.

17. The correlation between baseline price and marginal price is approximately 0.79; the correlation between
baseline price and average price is approximately 0.94. See Table A1 for all bivariate correlations between our
five measures of price.
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instrument one of the endogenous prices with baseline price. There is at least one drawback to

this approach: baseline price, by definition, fails to capture the higher price that a household

faces when the household exceeds its total monthly allowance.

Option 3: Simulated instrument Simulated instruments (sometimes called policy-induced
instruments) provide a third option for breaking the price-is-a-function-of-quantity flavor of

endogeneity. The simulated-instrument approach follows a methodology suggested in Ito

(2014). Specifically, this approach creates an instrument (or proxy) for marginal (or average)

price by plugging a lagged level of consumption into the current price regime, i.e.,

zi,t = pi,t (qt−k) (4)

The main idea for this instrument is using a household’s consumption history to predict

whether a household will face the baseline or excess price in the current period. As with

any instrument, we want to accomplish this prediction in a way that is strongly predictive

of the true outcome (the first stage) and that is uncorrelated with any recent shocks to the

household (the exclusion restriction) (Angrist and Pischke 2009). For these reasons, we

modify equation 4 slightly. First, we use the households’ lagged consumption levels (from

lagged bills 10 through 14 months prior) to calculate the share of lagged periods that exceed

this billing period’s baseline allowance, i.e.,

si,t =
1
5

14∑
k=10

1
{
qi,t−k > Āi,t

}
(5)

where Āi,t is household i’s baseline allowance in time (bill) t. We then calculate the simulated

instrument for marginal price, zi,t, as

zi,t = 1
{
si,t ≤ 0.5

}
× pbase

i,t + 1
{
si,t > 0.5

}
× pexcess

i,t (6)

Summarizing equations 5 and 6: this simulated instrument for marginal price predicts that

a household will exceed its allowance when the majority of the household’s past bills (using

lagged months 10 through 14) exceed the current bill’s allowance.18

Table A2 provides evidence that this simulated-instrument approach significantly predicts

households’ marginal prices. Specifically, Table A2 provides the estimate and standard error

for β in the equation

pmrg
i,t = βpsim

i,t + HHi + Cityi,t + wi,t (7)

where pmrg
i,t is household i’s marginal price in time t and psim

i,t is our simulated instrument for

18. This simulated instrument is robust to the choice of months 10 through 14. The goal is to keep the instrument
in the same season as the current bill (maintaining a strong first stage), while allowing some temporal distance
between the lags and the current period (the exclusion restriction: preventing short- and medium-run shocks
from affecting both periods).
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household i’s marginal price in time t
(
i.e., pmrg

i,t

)
. The estimates for β in Table A2 confirm the

strong “first stage” for this simulated instrument. Marginal price and simulated marginal price

are strongly and significantly correlated—both t statistics are approximately 148. The two

columns in Table A2 also provide evidence of the robustness of the simulated instrument to

the choice of lags: the estimates using lags 10–14 or 11–13 are virtually indistinguishable. In

addition, the bottom row of Table A1 demonstrates that this simulated instrument is strongly

correlated with marginal price (r ≈ 0.85) in addition to the other four measures of price.

Column 5 of Table 6 (Panel A) provides the first-stage results consistent with equation 2

but with the simulated instrument of marginal price substituted (proxying) for actual marginal

price (and still instrumenting with spot price interacted with utility across the utilities’ bor-

der).19 The first stage is again quite strong in this specification, and the results are qualitatively

similar to the results in columns 1–4 of Table 6, Panel A. Henceforth we will refer to the

simulated instrument for marginal price as simulated marginal price.

5 Results

5.1 Pooled price elasticity of demand for natural gas

Panel B of Table 6 displays the elasticity results from the second-stage regression specified

in equation 3. These results instrument log price with the Henry Hub spot price (interacted

with utility), exploit the spatial discontinuity, and use the log of daily average consumption

(in therms) as the outcome. The five columns each estimate the elasticity using the log of a

different type of price: marginal price, average price, average marginal price, baseline price,

and simulated marginal price. As discussed above, each price is the second lag of price, as

opposed to the contemporaneous price. The estimates for the price elasticity of demand range

from −0.19 (average price) to −0.15 (average marginal price).

Comparing the estimated elasticities across the different types of price shows little differ-

ence. Most notably, the estimated elasticity with respect to marginal price (−0.174) is slightly

lower than that with respect to average price (−0.192). Both differ from zero but do differ

from each other at the 10% level. This result is reasonable in our setting, as the step in natural

gas prices across tiers is not as significant as it is in the case of electricity.

Table A10 demonstrates that the estimated elasticity is also robust to the inclusion/exclusion

of heating degree days and to the levels of fixed effects—ranging from city by month-of-sample

fixed effects to zip-code by week-of-sample fixed effects (while still including household fixed

effects). The robustness to type of price also demonstrates robustness to how we control for

the price-is-a-function-of-quantity endogeneity discussed above. Tables A10–A14 demonstrate

the robustness of the estimated elasticity to excluding within-bill heating degree days and

19. It is worth noting that in our paper, any result using the simulated instrument will have fewer observations
than other results, as the simulated instrument is greedier for data—for an observation to remain in the dataset,
its 14th lag must also be in the dataset. Our other price measures are not as greedy.
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varying the spatiotemporal fixed effects. Finally, Table A15 contains marginal-price based

elasticity estimates as we incrementally extend the study-area. Beginning with the study area

(Common Zips), we add the zip codes neighboring (bordering) the study area (Neighbors
1); we then add the neighbors of the neighbors (Neighbors 2); last, we add a third band of

neighbors (Neighbors 3). Figure A6 illustrates these groups of neighboring zip codes. The

estimated elasticity from the first group of neighbors (−0.15 (0.05) in column 2 of Table A15)

is quite close to the elasticity previously discussed (−0.17, (0.06) in column 1); the elasticities

that include the second and third peripheral neighbors diminish in magnitude (−0.08 and

−0.06) but still differ significantly from zero.

Compared to their OLS-based counterparts in Table 5, the marginal-price based 2SLS esti-

mates for the elasticity of demand now have opposite—and theoretically correct—signs. The

magnitudes of our preferred estimate of the elasticity (approximately −0.17) is precisely esti-

mated and within the range of previous findings. Furthermore, these estimates are identified

and hence carry a causal interpretation.

As discussed above, the results discussed up to this point—e.g., the results in Table 6—

estimate the price elasticity of demand for residential natural gas using the second lag of

the various prices. In order for a household to know the price of its contemporaneous bill,

the household would need to closely follow the approved advice letters published online by

the utility or the California Public Utilities Commission and pay careful attention to their

daily gas consumption, which is much harder to do than for electricity for technical metering

reasons as gas meters are less smart. Otherwise, the household will learn about prices from

past bills—hence the use of lagged prices. Because a household will not receive the bill for

the previous billing period for several days into its current billing period—and because the

household may not view the previous bill until it pays the bill (or its credit card bill, if the

household uses automatic bill payment) weeks later—the household may not know the prices

from its immediately previous bill until the current period is nearly over. For these reasons, it

is plausible that the second lag of price is the most salient price to many households. Figure 6

illustrates an example of the timing for bill delivery, bill payment, and the relevant lags of

prices.

Table 7 replicates the second-stage results for marginal price and average price but varies

the lag/lead of price: beginning with the first lead of price, followed by contemporaneous

price, the first lag of price, and finally the second lag of price. Tables A3–A6 provide further

detail, varying the lead/lag of each of the five prices—ranging from the first lead of price to

the third lag of price. Across the five types of measures of price, none of the first leads of price,

contemporaneous prices, or first lags of price differ significantly from zero. For each type of

price, both the second and third lags of price differ significantly from zero. For each price, the

second-lag based elasticity slightly exceeds the third-lag based elasticity in magnitude, but the

difference does not exceed the standard error. These results are consistent with households

responding to two-to-three lags of price—as opposed to contemporaneous price—suggesting
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some degree of inattention by the household to the true price, akin to previous work on

inattention and salience, e.g., Chetty, Looney, and Kroft (2009), Sallee (2013), and Allcott

and Taubinsky (2015).

At the suggestion of a referee, we use an alternate instrument instead of Henry Hub price:

lagged heating degree days (HDDs) on the East Coast in various forms (polynomials and bins).

While we maintain the Henry Hub prices are exogenous to a customer’s bill, this serves as a

robustness check. Table A16 displays the estimated elasticities for marginal price using six

different functional forms of population-weighted, lagged HDDS east of the Mississippi River.

The estimated elasticities range from −0.20 to −0.14—consistent with our previous results

that ranged from −0.19 to −0.15. The most flexible polynomial results in an estimate of

−0.172, which is almost identical to the estimate using the Henry Hub prices and statistically

different form zero at the 5% level.

5.2 Heterogeneity

We now examine evidence of heterogeneity in the price elasticity of demand for natural gas.

Our institutional setting motivates two relevant dimensions of heterogeneity—income level

and season—as the CPUC and utilities already apply different price regimes to households

depending upon (1) the season of year (summer vs. winter) and (2) the household’s income

level (as proxied by CARE status). If heterogeneity exists, then the regressions in the preceding

section pool across the heterogeneous effects. This pooled parameter estimate may still be

relevant for policy applications—particularly for policies that cannot differentiate between

seasons and/or income groups. However, because OLS weights heterogeneous treatment

effects by their shares of the residual variation in the variable of interest—which is itself

a function of (1) the numbers of observations in the heterogeneous groups and (2) the

(residual) within-group variance in the variable of interest (Solon, Haider, and Wooldridge

2015)—one might wonder whether the pooled estimator always provides a policy-relevant

estimate.

The income-based heterogeneities that we estimate should be taken as descriptive for the

given group, rather than causal effects of income level or season. In other words, while we

estimate heterogeneous elasticities with respect to income level/CARE status, this heterogene-

ity may have nothing to do with income and could instead result from some other (omitted)

variable that correlates with income/CARE status, e.g., the age and size of the physical home.

However, identification of the sources of heterogeneity is not our goal; instead, we aim to

identify the elasticity of demand and demonstrate dimensions of heterogeneity. We leave

it for future papers to identify the mechanisms behind this heterogeneity. For seasonal het-

erogeneity, we split the calendar into winter months (October through March) and summer

months (April through September).20

20. This definition reflects Southern California’s two seasons: warm and slightly less warm.
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5.2.1 Seasonal heterogeneity

To estimate seasonal heterogeneity in the price elasticity of demand for residential natural

gas, we estimate the two-stage least squares equations 2 and 3 separately for winter months

and for summer months. Columns (1) and (2) of Table 8 supply the second-stage results from

these regressions, providing estimates of the elasticity of demand by season.

The results in columns (1) and (2) of Table 8 indicate a stark and significant difference

between price elasticities in summer and winter months. Using marginal price, we estimate

that the price elasticity of demand for natural gas in summer months is approximately 0.03

(0.03), which does not differ from zero statistically at the 10% level. The estimated elastic-

ity for winter months is approximately −0.37 (0.11) and differs significantly from zero at

the 1 percent level. The two point estimates are different form each other at the 1% level.

These results provide strong evidence that households’ consumptive and price-response be-

haviors vary considerably by season—the winter-based elasticity is nearly twice the “pooled”

elasticity.21

5.2.2 Income heterogeneity

To examine income-based heterogeneity in the price elasticity of demand for natural gas, we

estimate the two-stage least squares equations 2 and 3 separately for CARE households and

non-CARE households. Columns (3) and (4) of Table 8 supply the second-stage results from

these regressions, providing estimates of the elasticity of demand by income level (CARE

status).

The results in columns (3) and (4) of Table 8 suggest that the elasticity results in the

previous section may in fact pool across heterogenous elasticities; we estimate that the price

elasticity for CARE (lower-income) households is approximately twice that of non-CARE

(higher-income) households. Specifically, using the marginal price, we estimate an elasticity

of approximately −0.20 (0.062) for CARE (lower income) households and −0.13 (0.062)

for non-CARE households. The “pooled” estimate corresponding to these results is −0.174

(0.065) (column (1) of Panel B in Table 6)—slightly higher than the midpoint between

the CARE estimate and the non-CARE estimate. We note that the two point estimates are

not statistically different from each other at the 10% level, which in part may be due to a

conservative (but we believe correct) clustering strategy.

5.2.3 Income-by-season heterogeneity

To estimate seasonal-by-income heterogeneity in the own-price elasticity of demand for resi-

dential natural gas, we estimate the two-stage least squares equations 2 and 3 separately for

the four potentially heterogeneous subgroups: CARE households in the summer, non-CARE

21. Table A7 reproduces these heterogeneity results using average price—rather than marginal price—with very
similar results.
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households in the summer, CARE households in the winter, and non-CARE households in the

winter. Table 9 displays the second-stage results from these regressions, providing estimates

of the elasticity of demand by season and CARE status.

The results in Table 9 are consistent with heterogeneous elasticities that depend upon

the interaction between household income (CARE status) and season. In other words, the

difference between a household’s winter and summer price elasticities varies by the house-

hold’s income level. Specifically, the results in Table 9 indicate that both income groups are

essentially inelastic to prices in summer months; we estimate a “summertime” price elasticity

of 0.025 (0.035) for CARE households and 0.062 (0.033) for non-CARE households. Both

elasticities are positive, but only one is significantly different from zero at the 10% level and

small. In winter months, both sets of consumers are significantly and substantially more

responsive to price, but the point estimates for CARE households indicate a higher price

responsiveness. We estimate the “wintertime” price elasticity of demand for natural gas is

−0.459 (0.110) for CARE households and −0.365 (0.110) for non-CARE households. For both

types of households the summer elasticity is statistically different from the winter elasticity.

We cannot, however, reject equality of the winter elasticities across both types of households

given our clustering strategy.

5.3 Policy implications

The heterogeneity discussed above suggests that households are much more price sensitive

during their high-consumption months—the winter. These high-consumption winter months

also correspond to the time of year in which consumers use natural gas in its most salient form:

heating. When we break down the price elasticity across users and seasons, we show that

subsidized (lower income) consumers display the largest price sensitivity during the winter

(−0.46). Neither type of customer displays a substantial price response in the summer. These

results suggest that, if one wanted to pass through the small program and administrative

fees charged volumetrically by regulators to consumers, summertime may be best—both

for efficiency and possibly for progressivity.22 This reasoning suggests an implementable

dimension for regulators charging small administrative and program fees that we have not

seen recommended in the literature or applied in practice in the utility space. For a much more

thoughtful discussion of these issues, we refer the reader to Hausman (2019) and Borenstein,

Fowlie, and Sallee (2021).

22. This point hinges critically on the assumption that external costs from natural gas combustion are properly
priced. For global pollutants, this is the case in California because the natural gas sector is part of California’s cap
and trade system.
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6 Discussion and conclusion

We use a large sample of household natural gas bills with a multi-part identification strat-

egy to provide micro-data based causal estimates of the own-price elasticity of demand for

residential natural gas across seasons and income groups for California. Using cross-border

price variation between California’s two largest natural gas utilities—resulting from the util-

ities’ differential pass-through of wholesale price variation—we isolate plausibly exogenous

variation in residential natural gas prices. We estimate an elasticity of −0.17 with respect

to marginal price. This estimate is robust to specification choices that include within-bill

weather, several price instruments, and the definition/type of price. The point estimates for

the own-price elasticity range from −0.19 to −0.15 across five considered measures of price.

Notably, we do not find a differential consumer response to average versus marginal price.

Because households respond significantly to price changes two to four months prior to the pe-

riod of consumption—and following Ito (2014)—we interpret these estimated elasticities as

medium-run elasticities. We agree with Ito (2014) who notes that the medium-run elasticity

is often the most policy-relevant elasticity.

As a second important finding, we estimate that the own-price elasticity of demand varies

across seasons and possibly customer types. We show that the price elasticity varies greatly

across seasons. If we average across types of households, the summer price elasticity is close

to, and only marginally different from, zero. The winter price elasticity is −0.37. Households

are most responsive to natural-gas prices when they are heating. We show suggestive evidence

that households on a popular low-income program, which subsidizes households’ natural gas

and electricity, appear to be more elastic in their response to price as households who are not

part of the program. We further decompose the estimated price elasticity across users and

seasons, and show that lower-income consumers display the largest price sensitivity during

the winter (−0.46), although this estimate is not statistically different from that for non-CARE

(higher income) customers.

Finally, based upon the heterogeneity underlying the own-price elasticity of demand, we

suggest that small volumetric administrative program fees could be billed during inelastic

periods (here: warm, non-heating months). In the setting of natural gas, this policy idea has

the potential to slightly enhance efficiency and possibly equity.
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7 Figures

Figure 1: U.S. natural gas institutional organization

N. American producers LNG imports/exports

Processors

Storage Pipeline LNG terminals

Local distribution companies (LDCs)

Electricity plants Industrial users

Residential and commercial users

Notes: Overbars represent points of entry into the U.S. natural gas market; underbars represent end
points in the market; all other labels represent intermediaries. Arrow directions correspond to the
direction of the flow of natural gas. The acronym LNG abbreviates liquid natural gas. This figure is
based on Levine, Carpenter, and Thapa (2014) with modification following Brown and Yücel (1993).
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Figure 2: Henry Hub natural gas spot price: Daily, 1997–2016

0.0

0.5

1.0

1.5

2000 2005 2010 2015

Date

D
ai

ly
 n

at
u
ra

l 
ga

s 
sp

ot
 p

ri
ce

 (
U

SD
 p

er
 t

h
er

m
)

Source: U.S. Energy Information Administration
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Figure 3: Households’ allowances and prices

(a) Allowance and marginal vs. average price example: PG&E, January 2009, climate zone R

0.0

0.5

1.0

1.5

0 50 100 150 200

Quantity consumed during bill (therms)

P
ri

ce
 (

U
SD

 p
er

 t
h
er

m
)

Marginal price Average price

(b) Tier-one daily allowances over time: PG&E (zone R) and SoCalGas (zone 1), 2009–2015
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Notes: Households receive daily allowances for baseline (first-tier) consumption as a function of
location and season (e.g., climate zone R, January 2009). The household pays the second-tier price on
all units that exceed its allowance—comparing total consumption (during the billing period) to total
allowance (daily allowance summed across the bills’ days).
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Figure 4: Natural gas service areas and the study-area discontinuity
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Notes: The left side of the figure displays PG&E’s and SoCalGas’s services areas (by 5-digit zip code). The right side of the figure zooms in on three
clusters of cities that receive service from both utilities. These three clusters of cities encompass 39 zip codes; 18 of these (5-digit) zip codes receive
service from both PG&E and SoCalGas. These 18 zip codes represent the main study area for the paper.
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Figure 5: Prices across utilities, tiers, and in the spot market, 2009–2015

(a) Price regimes over time: PG&E and SoCalGas, 2009–2015
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(b) Correlation across prices Three relevant natural gas price series, 2009–2015
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Notes: Baseline refers to first-tier price, i.e., the price a household pays for its first therm of natural gas. Excess
refers to the second-tier price, i.e., the price a household pays for each therm that exceeds its first-tier allowance
(see Figure 3). The Henry Hub spot price is generally recognized as a national benchmark (U.S. Energy
Information Administration 2016a; Levine, Carpenter, and Thapa 2014).
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Figure 6: Calendar months and billing periods: Four 30-day bills and five months
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Notes: The household receives its bill from the Lag 1 period on the fifth business day of its current
billing period (the 17th). Payment for the Lag 1 bill is due two weeks later (on the 1st). Now consider
the question “Which lag of price is relevant?” Current: For the household to know the price structure
for its current billing period, it must pay attention to the approval status of its utility’s advice-letters
correspondence with the CPUC. Lag 1: Again, unless the household pays attention to the utility’s
CPUC-approved advice letters, it will not know the prices in the Lag 1 billing period until it receives
and opens the bill. The bill arrives several days into the new period, and if the household does not see
the bill until payment, it may not learn about the prices of the Lag 1 bill until the current billing
period is nearly complete. Autopay may extend this moment of salience even further into the future.
Lag 2: Throughout the entirety of the Current billing period, the household will know the prices from
its Lag 2 bill, and for a non-zero amount of time, the Lag 2 bill is likely to be the most recent set of
prices the household knows. Lag 3: Same level of knowledge as Lag 2 but less recent.
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Figure 7: Natural gas and electricity prices: Comparing utilities and industries

(a) Comparing trends in levels, 2010–2014

(b) Comparing trends in differences across utilities, 2010–2014

Notes: For the consumers in this paper, natural gas prices do not significantly correlate with electricity
prices—neither in levels (Panel A), nor in differences (Panel B). Differences constitute PG&E minus SoCal within
the same calendar month. We demean the time series of differences for each industry (natural gas and
electricity). SoCal denotes the Southern California Gas Company for natural gas and Southern California Edison
for electricity. The underlying data come from publicly available CPUC letters for the relevant utilities.
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Figure 8: Increasing tax efficiency using seasonal heterogeneity
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Notes: Each figure presents the combination of a tax (current vs. proposed) and a season; the x and y axes are
quantity and price, respectively. The top row illustrates the two seasons under the current tax, where
households pay the same tax per therm in both seasons. The shaded gray area gives the deadweight loss (DWL)
under this tax. Proposed tax: The bottom row doubles the tax in the summer—increasing DWL by the narrow
pink region—and halves the tax in the winter—reducing DWL by the purple region. Overall DWL decreases.
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8 Tables

Table 1: Prior point estimates: The price elasticity of demand for residential natural gas

Paper Data Estimate

Davis and Muehlegger (2010) US state panel −0.278

Maddala et al. (1997) US state panel −0.09 to −0.18

Garcia-Cerrutti (2000) Calif. county panel −0.11

Hausman and Kellogg (2015) US state panel −0.11

Herbert and Kreil (1989) Monthly time series −0.36

Houthakker and Taylor (1970) Time series −0.15

Metcalf and Hassett (1997) RECS HH panel −0.08 to −0.71

Meier and Rehdanz (2010) UK HH panel −0.34 to −0.56

Rehdanz (2007) Germany HH panel −0.44 to −0.63

Hahn and Metcalfe (2021) California HH panel (CARE) −0.35

Sources: Authors and Alberini, Gans, and Velez-Lopez (2011)

Table 2: Billing data summaries

Full dataset Border-area dataset

PG&E SoCalGas PG&E SoCalGas

N. 5-digit zip codes 597 611 18 18

N. unique households 5,888,276 2,526,503 152,418 68,407

N. bills 180,663,705 95,335,393 3,401,947 2,352,141

Approx. value (USD) $5.71B $3.28B $120M $70.5M

Notes: Full dataset refers to all of the PG&E and SoCalGas bills in the data. Border-area (discontinuity) dataset
refers to the subset of the full dataset for households located in the 18 5-digit zip codes served by both utilities
during 2010–2014.
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Table 3: Numerical summaries: Prices, quantities, and other variables of interest

5% Sample of California Border-discontinuity sample

Split by utility Split by season Split by CARE

Variable Overall PG&E SoCalGas Overall Winter Summer CARE Non-Care

Baseline price 0.8901 0.9823 0.7432 0.9026 0.8836 0.9204 0.8080 0.9811
[0.1686] [0.1206] [0.1242] [0.1419] [0.1361] [0.1448] [0.0854] [0.1311]

Average price 1.0138 1.1053 0.8680 1.0211 1.0008 1.0402 0.9086 1.1147
[0.1845] [0.1439] [0.1439] [0.1621] [0.1583] [0.1633] [0.1004] [0.1430]

Marginal price 1.0206 1.1277 0.8500 1.0387 1.0121 1.0637 0.9338 1.1259
[0.2260] [0.186] [0.173] [0.1983] [0.1905] [0.2021] [0.1448] [0.1944]

Therms 35.4626 37.7541 31.8135 33.8273 50.9544 17.7311 33.1136 34.4204
[33.7995] [36.0107] [29.5791] [30.7697] [35.2487] [11.5803] [28.7629] [32.3306]

Days 30.3992 30.4282 30.3530 30.3994 30.5876 30.2225 30.4040 30.3955
[1.4275] [1.2667] [1.6505] [1.3038] [1.3843] [1.1966] [1.2761] [1.3263]

Therms per day 1.1592 1.2355 1.0378 1.1063 1.6588 0.5871 1.0840 1.1249
[1.0921] [1.1698] [0.9426] [0.9936] [1.1354] [0.3838] [0.9304] [1.0429]

Total bill 36.8703 42.3938 28.0747 34.9508 52.0750 18.8573 30.3135 38.8040
[39.5758] [44.0564] [29.0445] [33.8812] [39.8973] [14.0069] [27.2567] [38.1017]

(Percent) CARE 27.43% 26.35% 29.15% 45.38% 45.00% 45.74% 100% 0%

Notes: Unbracketed values provide the variables’ means; bracketed values denote the variables’ standard deviations. The 5% sample of California is based upon 5% of
PG&E’s and SoCalGas’s natural gas bills from 2010–2014, sampling at the 5-digit zip code. The border-discontinuity sample represents all bills from PG&E and SoCalGas
for the 18 5-digit zip codes served by both utilities from 2010–2014.
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Table 4: Balance on observables: Comparing utilities’ customers across the discontinuity

Non-CARE CARE

Variable PG&E SoCalGas Diff. PG&E SoCalGas Diff.

Panel A: Summer

Therms consumed 17.61 17.29 0.32 19.35 18.00 1.34
[10.8] [11.7] [11.3] [11.3] [11.3] [11.3]

Days in bill 30.31 29.97 0.34 30.29 29.96 0.33
[1.16] [1.36] [1.28] [1.16] [1.36] [1.22]

Allowance 14.17 17.22 −3.05 14.14 17.11 −2.96
[0.805] [8.05] [6.14] [0.851] [8.17] [4.33]

Total bill 21.58 16.45 5.14 19.03 13.52 5.51
[14.8] [12.4] [13.8] [12.4] [9.35] [11.9]

HDDs 0.16 0.25 −0.08 0.14 0.26 −0.12
(thousands) [0.309] [0.407] [0.367] [0.267] [0.418] [0.315]

N 810,949 961,824 1,772,773 973,063 320,082 1,293,145

Panel B: Winter

Therms consumed 51.40 54.07 −2.67 49.60 49.94 −0.34
[33.8] [35.7] [34.8] [31.1] [33.1] [31.6]

Days in bill 30.55 30.78 −0.24 30.57 30.83 −0.26
[1.31] [1.8] [1.59] [1.31] [1.81] [1.45]

Allowance 46.70 49.07 −2.37 47.16 49.68 −2.52
[12.8] [10.7] [11.8] [12.4] [10.4] [12]

Total bill 59.79 50.60 9.19 45.35 36.51 8.84
[41.8] [36.4] [39.4] [30.3] [26.5] [29.7]

HDDs 1.69 1.73 −0.04 1.70 1.75 −0.05
(thousands) [0.467] [0.437] [0.452] [0.439] [0.422] [0.435]

N 746,140 800,037 1,546,177 871,795 270,198 1,141,993

Notes: Unbracketed values provide the variables’ means; bracketed values denote the variables’ standard
deviations. The standard deviations below the difference column (Diff.) are pooled across utilities. The difference
column denotes the difference in means across utilities for the given cross-section of data. For example, the
rightmost Diff. column in Panel A gives the difference between the PG&E mean and the SoCalGas mean for
CARE households in summer months, X̄P G E − X̄S C G . CARE households participate in the California Alternative
Rates for Energy (CARE) program. CARE targets low-income households and provides a 20 percent discount on
natural gas bills. Heating degree days (HDDs) are in thousands. We calculate the number of heating degrees for
day t with mean temperature T̄t (in ◦F) as HDDt = 1

{
T̄t < 65

}
×
(
65 − T̄t

)
. The HDDs variable above is thus

HDDS =
∑

t HDDt/1000.
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Table 5: OLS Results: Estimating elasticities, varying the dataset, and fixed effects

Dependent variable:
Log(Consumption, daily avg.)

(1) (2) (3)

Log(Marginal price) 0.4698∗∗∗ 0.4346∗∗∗ 0.4276∗∗∗

(0.0106) (0.0136) (0.0134)

Bill HDDs T T T
Household FE T T T
Month-of-sample FE T T F
City by month-of-sample FE F F T
Sample 5% CA Border Border
N 12,855,910 5,754,088 5,754,088

Notes: Each column denotes a separate regression. Errors are two-way clustered within (1) household and (2)
utility by climate-zone by billing-cycle (the level at which price varies). All regressions include heating degree
days (HDDs) within the households’ billing cycle. Price in the table is the second lag of price, i.e., the prices from
two bills prior to the current bill. Significance levels: *10%, **5%, ***1%.
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Table 6: First- and second-stage results:
Instrumenting consumers’ prices with the Henry Hub spot price

Dependent variable: Log(Consumption, daily avg.)

Panel A: First-stage results
(1) (2) (3) (4) (5)

Marginal Average Avg. Mrg. Baseline Sim. Mrg.

Spot price 0.4377∗∗∗ 0.3698∗∗∗ 0.3264∗∗∗ 0.4365∗∗∗ 0.4117∗∗∗

(0.0839) (0.0548) (0.0586) (0.0439) (0.1068)

Spot price 0.7833∗∗∗ 0.7161∗∗∗ 0.9377∗∗∗ 0.8231∗∗∗ 0.8126∗∗∗

× SoCalGas (0.0299) (0.0182) (0.0194) (0.0172) (0.0310)

Panel B: Second-stage results

Log(Price) −0.1743∗∗∗ −0.1919∗∗∗ −0.1500∗∗∗ −0.1666∗∗∗ −0.1749∗∗∗

(instrumented) (0.0645) (0.0700) (0.0543) (0.0600) (0.0673)

First-stage F stat. 152,617.4 353,807.8 540,457.5 718,718.5 116,118.5 .
Bill HDDs T T T T T
Household FE T T T T T
City mo.-of-sample FE T T T T T
N 5,782,724 5,782,724 5,782,724 5,782,724 4,658,087

Notes: Each column denotes a separate regression. Errors are two-way clustered within (1) household and (2)
utility by climate-zone by billing-cycle (the level at which price varies). All regressions include heating degree
days (HDDs) within the houesholds’ bill. (HH) Spot price refers to the weekly average spot price for natural gas
at Louisiana’s Henry Hub in the week preceding the utility’s price change. Each price in the table is the second
lag of price, i.e., the prices from two bills prior to the current bill. Avg. or average price is the total bill divided by
quantity. Avg. Mrg. or average marginal price denotes the quantity-weighted average of the household’s marginal
price. Sim. Mrg. or simulated marginal price is the household’s marginal price (using the relevant pricing regime)
as a function of the household’s historical consumption patterns (lagged bills 10 through 14). As discussed in the
empirical strategy section, the numbers of observations differ due to the lags required to calculate the simulated
instrument for marginal price. Significance levels: *10%, **5%, ***1%.
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Table 7: Comparing lags, second-stage results: Marginal and average prices with HH spot price IV

Dependent variable: Log(Consumption, daily avg.)

Marginal Price Average Price

(1) (2) (3) (4) (5) (6) (7) (8)
1 Lead No lag 1 Lag 2 Lags 1 Lead No lag 1 Lag 2 Lags

Log(Price) 0.0320 −0.1197∗ −0.0211 −0.1743∗∗∗ 0.0366 −0.1400∗ −0.0180 −0.1919∗∗∗

instrumented (0.0892) (0.0715) (0.0630) (0.0645) (0.0971) (0.0772) (0.0692) (0.0700)

First-stage F stat. 113,462.1 124,673.8 139,532.6 152,617.4 248,826.0 308,230.1 329,840.9 353,807.8
Bill HDDs T T T T T T T T
Household FE T T T T T T T T
City month-of-sample FE T T T T T T T T
N 5,711,976 5,782,724 5,782,724 5,782,724 5,704,716 5,782,724 5,782,724 5,782,724

Notes: With regard to lags: No lag refers to the price for the household’s contemporaneous bill; 1 Lag refers to the price on the household’s previous bill; etc. Avg. or
average price is the total bill divided by quantity. (HH) Spot price refers to the weekly average spot price for natural gas at Louisiana’s Henry Hub in the week preceding
the utility’s price change. Each column denotes a separate regression. Errors are two-way clustered within (1) household and (2) utility by climate-zone by billing-cycle
(the level at which price varies). All regressions include heating degree days (HDDs) within the households’ billing period. Significance levels: *10%, **5%, ***1%.
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Table 8: Heterogeneity by season or income:
Second-stage results, instrumenting marginal price with HH spot price

Dependent variable: Log(Consumption, daily avg.)

Marginal Price

Split by Season Split by CARE (Income)

(1) (2) (3) (4)
Summer Winter CARE Non-CARE

Log(Price) 0.0342 −0.3662∗∗∗ −0.2033∗∗∗ −0.1255∗∗

instrumented (0.0296) (0.1071) (0.0618) (0.0618)

First-stage F stat. 104,026.5 55,379.5 57,217.1 86,181.0
Bill HDDs T T T T
Household FE T T T T
City month-of-sample FE T T T T
N obs. 5,782,724 5,782,724 5,782,724 5,782,724

Notes: Columns (1)–(2) result from a single regression; columns (3)–(4) come from a single regression. Errors
are two-way clustered within (1) household and (2) utility by climate-zone by billing-cycle (the level at which
price varies). All regressions include heating degree days (HDDs) within the households’ billing period. We
interact fixed effects and the HDD control with indicators for the dimension of heterogeneity (season or CARE).
Each price in the table is the second lag of price, i.e., the prices from two bills prior to the current bill. Summer
includes April through September. Winter includes October through March. CARE households participate in the
California Alternative Rates for Energy (CARE) program. CARE targets low-income households and provides a 20
percent discount on natural gas bills. We estimate the heterogeneity results by splitting the sample along the
dimension(s) of heterogeneity and then individually estimating the models. Significance levels: *10%, **5%,
***1%.
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Table 9: Heterogeneity by season and income:
Second-stage results, instrumenting marginal price with HH spot price

Dependent variable: Log(Consumption, daily avg.)

Marginal Price

(1) (2) (3) (4)
Summer Summer Winter Winter

CARE Non-CARE CARE Non-CARE

Log(Price) 0.0250 0.0625∗ −0.4588∗∗∗ −0.3647∗∗∗

instrumented (0.0350) (0.0330) (0.1100) (0.1098)

First-stage F stat. 37,705.5 58,925.5 22,604.3 30,227.7
Bill HDDs T T T T
Household FE T T T T
City month-of-sample FE T T T T
N 5,782,724 5,782,724 5,782,724 5,782,724
N in subset 1,370,158 1,841,678 1,087,563 1,483,325

Notes: The four columns result from a single regression. Errors are two-way clustered within (1) household and
(2) utility by climate-zone by billing-cycle (the level at which price varies). All regressions include heating degree
days (HDDs) within the households’ billing period. We interact the fixed effects and the bill HDDs control with
both dimensions of heterogeneity (season and CARE status). Each price in the table is the second lag of price, i.e.,
the prices from two bills prior to the current bill. Summer includes April through September. Winter includes
October through March. CARE households participate in the California Alternative Rates for Energy (CARE)
program. CARE targets low-income households and provides a 20 percent discount on natural gas bills. We
estimate the heterogeneity results by splitting the sample along the dimension(s) of heterogeneity and then
individually estimating the models. Each price in the table is the second lag of price, i.e., the prices from two bills
prior to the current bill. Significance levels: *10%, **5%, ***1%.
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Figure A1: U.S. natural gas pipeline network

Notes: This map depicts the intra- and inter-state natural gas pipeline network for the (continental) United States (in black) overlayed on a map of the
(continental) U.S. (light gray). Source: U.S. Energy Information Administration
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Figure A2: Natural gas service areas and PG&E’s electricity service area

Electricity	Coverage	Area

PG&E

Natural	Gas	Coverage	Area

PG&E

SoCalGas

Notes: This map illustrates the natural gas service areas covered by PG&E (darker purple) and
SoCalGas (lighter gold), as well as PG&E’s service area for electricity (diagonally hashed pink).
PG&E’s electricity service covers both sides of the natural-gas service area. This overlap allows two
neighboring households to receive natural gas from two different utilities, while they both receive
electricity from PG&E. Note that this map differs slightly from Figure 4 because this map uses the
official boundaries from California Energy Commission, whereas Figure 4 maps zip codes contained in
our billing data.
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Figure A3: California’s 16 CEC climate zones determine daily allowance within season

Notes: The shapefile underlying this map comes from the California Energy Commission (CEC). This map
constitutes the CEC’s climate-based building zones, which affect a number of energy policies, including households’
baseline allowances. (California Energy Commission 2015, 2017)
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Figure A4: Example bill: PG&E residential natural gas bill

Notes: This 30-day bill for a PG&E customer (one of the authors) overlaps two calendar months in 2016: 7 days in November (24–30) and 23 days in December
(01–23). Because PG&E’s prices vary with the calendar month, PG&E needs to split consumption by calendar month. To achieve this task, PG&E assumes the customer
consumed evenly across all days in the bill. Specifically, PG&E calculates that the customer consumed 10 therms and assigns the same amount of consumption to each
day during the 30-day period. Thus, PG&E assigns 10 × 7/30 ≈ 2.33 to November (the consumer spent 7 days in November in this 30-day bill) and 10 × 23/30 ≈ 7.67 to
December (the consumer spent 23 days in November in this 30-day bill).
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Figure A5: PRISM: Mean temperature raster for 15 June 2010
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Figure A6: Expanding the study area: Zip codes neighboring the study’s zip codes

Zip-code group

Common Zips: zip codes served by both utilities

Neighbors 1: neighbors to Common Zips

Neighbors 2: neighbors to Neighbors 1

Neighbors 3: neighbors to Neighbors 2

Notes: This figure illustrates the four groups of zip codes referenced in Table A15. The groups begin
with Common Zips—the group in which each zip code receives natural gas service from both PG&E
and SoCalGas—and expands by adding each group’s immediately proximate neighbors. E.g.,
Neighbors 2 consists of all zip codes that neighbor a zip code in Neighbors 1 (excluding those zip codes
already included in another group).
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Figure A7: CARE status and income: Zip-code income per capita vs. share of bills with CARE

Notes: CARE/utility data come from the respective utilities; income data come from California
Franchise Tax Board.
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A.2 Appendix tables

Table A1: Price correlation: Bivariate correlations between types of prices

Type of Price

Marginal Average Avg. Mrg. Baseline Sim. mrg.

Marginal 1

Average 0.8898 1

Avg. Mrg. 0.8628 0.9421 1

Baseline 0.7901 0.942 0.9202 1

Sim. mrg. 0.8503 0.849 0.8174 0.781 1

Notes: Avg. or average price is the total bill divided by quantity. Avg. Mrg. or average marginal price denotes the
quantity-weighted average of the household’s marginal price. Base or baseline price refers to the price the
household pays for its first unit (therm) of natural gas. Sim. Mrg. or simulated marginal price is the household’s
marginal price (using the relevant pricing regime) as a function of the household’s historical consumption
patterns (lagged bills 10 through 14).

Table A2: Testing the simulated instrument:
Regressing marginal price on simulated marginal price

Dependent variable: Marginal price

(1) (2)

Simulated marginal price 0.1812∗∗∗ 0.1667∗∗∗

(0.0056) (0.0054)

Bill HDDs T T
Household FE T T
City month-of-sample FE T T
Lags used for sim. inst. 10–14 11–13
N 4,658,087 4,567,773

Notes: Each column denotes a separate regression. Errors are two-way clustered within (1) household and (2)
utility by climate-zone by billing-cycle (the level at which price varies). All regressions include heating degree
days (HDDs) within the households’ billing period. Sim. Mrg. or simulated marginal price is the household’s
marginal price (using the relevant pricing regime) as a function of the household’s historical consumption
patterns (lagged bills 10 through 14 or 11 through 13). As discussed in the empirical strategy section, the
numbers of observations differ due to the lags required to calculate the simulated instrument for marginal price.
Significance levels: *10%, **5%, ***1%.
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Table A3: Comparing lags, second-stage results: Sim. marginal price with HH spot price IV

Dependent variable: Log(Consumption, daily avg.)

Lag of Simulated Marginal Price

(1) (2) (3) (4) (5)
1 Lead No lag 1 Lag 2 Lags 3 Lags

Log(Price) 0.0042 −0.0691 0.0148 −0.1749∗∗ −0.1715∗∗

instrumented (0.0882) (0.0669) (0.0599) (0.0673) (0.0686)

First-stage F stat. 112,639.7 121,567.3 120,863.7 116,118.5 111,067.5
Bill HDDs T T T T T
Household FE T T T T T
City month-of-sample FE T T T T T
N 4,912,363 4,864,359 4,758,259 4,658,087 4,567,768

Notes: With regard to lags: No lag refers to the price for the household’s contemporaneous bill; 1 Lag refers to
the price on the household’s previous bill; etc. Sim. Mrg. or simulated marginal price is the household’s marginal
price (using the relevant pricing regime) as a function of the household’s historical consumption patterns (lagged
bills 10 through 14). (HH) Spot price refers to the weekly average spot price for natural gas at Louisiana’s Henry
Hub in the week preceding the utility’s price change. Each column denotes a separate regression. Errors are
two-way clustered within (1) household and (2) utility by climate-zone by billing-cycle (the level at which price
varies). All regressions include heating degree days (HDDs) within the households’ billing period. Significance
levels: *10%, **5%, ***1%.

Table A4: Comparing lags, second-stage results: Avg. marginal price with HH spot price IV

Dependent variable: Log(Consumption, daily avg.)

Lag of Average Marginal Price

(1) (2) (3) (4) (5)
1 Lead No lag 1 Lag 2 Lags 3 Lags

Log(Price) 0.0315 −0.0908 −0.0354 −0.1500∗∗∗ −0.1417∗∗∗

instrumented (0.0734) (0.059) (0.0538) (0.0543) (0.0559)

First-stage F stat. 435,512.6 477,158.8 511,605.5 540,457.0 505,347.9
Bill HDDs T T T T T
Household FE T T T T T
City month-of-sample FE T T T T T
N 5,704,716 5,782,724 5,782,724 5,782,724 5,714,679

Notes: With regard to lags: No lag refers to the price for the household’s contemporaneous bill; 1 Lag refers to
the price on the household’s previous bill; etc. Sim. Mrg. or simulated marginal price is the household’s marginal
price (using the relevant pricing regime) as a function of the household’s historical consumption patterns (lagged
bills 10 through 14). (HH) Spot price refers to the weekly average spot price for natural gas at Louisiana’s Henry
Hub in the week preceding the utility’s price change. Each column denotes a separate regression. Errors are
two-way clustered within (1) household and (2) utility by climate-zone by billing-cycle (the level at which price
varies). All regressions include heating degree days (HDDs) within the households’ billing period. Significance
levels: *10%, **5%, ***1%.

52



Table A5: Comparing lags, second-stage results: Average price with HH spot price IV

Dependent variable: Log(Consumption, daily avg.)

Lag of Average Price

(1) (2) (3) (4) (5)
1 Lead No lag 1 Lag 2 Lags 3 Lags

Log(Price) 0.0366 −0.1400∗ −0.0185 −0.1919∗∗∗ −0.1797∗∗

instrumented (0.0971) (0.0771) (0.0692) (0.0700) (0.0729)

First-stage F stat. 248,826.0 308,320.1 329,840.9 353,807.0 295,600.1
Bill HDDs T T T T T
Household FE T T T T T
City month-of-sample FE T T T T T
N 5,704,716 5,782,724 5,782,724 5,782,724 5,714,679

Notes: With regard to lags: No lag refers to the price for the household’s contemporaneous bill; 1 Lag refers to
the price on the household’s previous bill; etc. Avg. or average price is the total bill divided by quantity. (HH) Spot
price refers to the weekly average spot price for natural gas at Louisiana’s Henry Hub in the week preceding the
utility’s price change. Each column denotes a separate regression. Errors are two-way clustered within (1)
household and (2) utility by climate-zone by billing-cycle (the level at which price varies). All regressions include
heating degree days (HDDs) within the households’ billing period. Significance levels: *10%, **5%, ***1%.

Table A6: Comparing lags, second-stage results: Baseline price with HH spot price IV

Dependent variable: Log(Consumption, daily avg.)

Lag of Baseline Price

(1) (2) (3) (4) (5)
1 Lead No lag 1 Lag 2 Lags 3 Lags

Log(Price) 0.0279 −0.1336∗∗ −0.0063 −0.1666∗∗∗ −0.1452∗∗

instrumented (0.0819) (0.0665) (0.0607) (0.0600) (0.0604)

First-stage F stat. 631,126.3 649,648.6 659,016.2 718,718.0 715,115.2
Bill HDDs T T T T T
Household FE T T T T T
City month-of-sample FE T T T T T
N 5,711,976 5,782,724 5,782,724 5,782,724 5,721,093

Notes: With regard to lags: No lag refers to the price for the household’s contemporaneous bill; 1 Lag refers to
the price on the household’s previous bill; etc. Base or baseline price refers to the price the household pays for its
first unit (therm) of natural gas. (HH) Spot price refers to the weekly average spot price for natural gas at
Louisiana’s Henry Hub in the week preceding the utility’s price change. Each column denotes a separate
regression. Errors are two-way clustered within (1) household and (2) utility by climate-zone by billing-cycle
(the level at which price varies). All regressions include heating degree days (HDDs) within the households’
billing period. Significance levels: *10%, **5%, ***1%.
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Table A7: Heterogeneity by season or income:
Second-stage results, instrumenting average price with HH spot price

Dependent variable: Log(Consumption, daily avg.)

Average Price

Split by Season Split by CARE (Income)

(1) (2) (3) (4)
Summer Winter CARE Non-CARE

Log(Price) 0.0375 −0.4401∗∗∗ −0.2173∗∗∗ −0.1377∗∗

instrumented (0.0326) (0.1240) (0.0761) (0.0674)

First-stage F stat. 244,242.9 113,729.8 160,233.1 295,231.7
Bill HDDs T T T T
Household FE T T T T
City month-of-sample FE T T T T
N 5,782,724 5,782,724 5,782,724 5,782,724

Notes: Columns (1)–(2) come from a single regression; columns (3)–(4) come from another regression. Errors
are two-way clustered within (1) household and (2) utility by climate-zone by billing-cycle (the level at which
price varies). All regressions include heating degree days (HDDs) within the households’ billing period. Summer
includes April through September. Winter includes October through March. CARE households participate in the
California Alternative Rates for Energy (CARE) program. CARE targets low-income households and provides a 20
percent discount on natural gas bills. We estimate the heterogeneity results by splitting the sample along the
dimension(s) of heterogeneity and then individually estimating the models. Avg. or average price is the total bill
divided by quantity. Each price in the table is the second lag of price, i.e., the prices from two bills prior to the
current bill. Significance levels: *10%, **5%, ***1%.
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Table A8: Heterogeneity by season and income:
Second-stage results, instrumenting average price with HH spot price

Dependent variable: Log(Consumption, daily avg.)

Average Price

(1) (2) (3) (4)
Summer Summer Winter Winter

CARE Non-CARE CARE Non-CARE

Log(Price) 0.0270 0.0688∗ −0.5251∗∗∗ −0.4353∗∗∗

instrumented (0.0378) (0.0365) (0.1241) (0.1263)

First-stage F stat. 106,853.3 216,106.7 60,255.1 90,857.6
Bill HDDs T T T T
Household FE T T T T
City month-of-sample FE T T T T
N 5,782,724 5,782,724 5,782,724 5,782,724
N in subset 1,370,158 1,841,678 1,087,563 1,483,325

Notes: The four columns result from a single regression. Errors are two-way clustered within (1) household and
(2) utility by climate-zone by billing-cycle (the level at which price varies). All regressions include heating degree
days (HDDs) within the households’ billing period. We interact the fixed effects and the bill HDDs control with
both dimensions of heterogeneity (season and CARE status). Each price in the table is the second lag of price, i.e.,
the prices from two bills prior to the current bill. Summer includes April through September. Winter includes
October through March. CARE households participate in the California Alternative Rates for Energy (CARE)
program. CARE targets low-income households and provides a 20 percent discount on natural gas bills. We
estimate the heterogeneity results by splitting the sample along the dimension(s) of heterogeneity and then
individually estimating the models. Avg. or average price is the total bill divided by quantity. Each price in the
table is the second lag of price, i.e., the prices from two bills prior to the current bill. Significance levels: *10%,
**5%, ***1%.
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Table A9: First-stage results:
Robustness to specification: Marginal price instrumented with spot price

Dependent variable: Log(Marginal price)

(1) (2) (3) (4)

Spot price 0.4080∗∗∗ 0.4377∗∗∗ 0.3631∗∗∗ 0.4666∗∗∗

(0.0815) (0.0839) (0.0649) (0.0588)

Spot price × SoCalGas 0.7828∗∗∗ 0.7833∗∗∗ 0.7729∗∗∗ 0.7337∗∗∗

(0.0299) (0.0299) (0.0303) (0.0372)

First-stage F stat. 151,153.1 152,617.4 122,411.2 34,337.6
Bill HDDs F T T T
Household FE T T T T
City by month-of-sample FE T T F F
City by week-of-sample FE F F T F
Zip by week-of-sample FE F F F T
N 5,782,724 5,782,724 5,782,724 5,782,724

Notes: Each column denotes a separate regression. Errors are two-way clustered within (1) household and (2)
utility by climate-zone by billing-cycle (the level at which price varies). All regressions include heating degree
days (HDDs) within the households’ billing period. Each price in the table is the second lag of price, i.e., the
prices from two bills prior to the current bill. (HH) Spot price refers to the weekly average spot price for natural
gas at Louisiana’s Henry Hub in the week preceding the utility’s price change. Significance levels: *10%, **5%,
***1%.

Table A10: Second-stage results:
Robustness to specification: Marginal price instrumented with spot price

Dependent variable: Log(Consumption, daily avg.)

(1) (2) (3) (4)

Log(Marginal price) −0.3285∗∗∗ −0.1743∗∗∗ −0.1434∗∗ −0.1448∗∗∗

instrumented (0.0798) (0.0645) (0.0578) (0.063)

First-stage F stat. 151,153.1 152,617.4 122,511.2 34,337.6
Bill HDDs F T T T
Household FE T T T T
City by month-of-sample FE T T F F
City by week-of-sample FE F F T F
Zip by week-of-sample FE F F F T
N 5,782,724 5,782,724 5,782,724 5,782,724

Notes: Each column denotes a separate regression. Errors are two-way clustered within (1) household and (2)
utility by climate-zone by billing-cycle (the level at which price varies). All regressions include heating degree
days (HDDs) within the households’ billing period. Each price in the table is the second lag of price, i.e., the
prices from two bills prior to the current bill. Significance levels: *10%, **5%, ***1%.
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Table A11: Second-stage results:
Robustness to specification: Average price instrumented with spot price

Dependent variable: Log(Consumption, daily avg.)

(1) (2) (3) (4)

Log(Average price) −0.3585∗∗∗ −0.1919∗∗∗ −0.1662∗∗∗ −0.1551∗∗∗

instrumented (0.0857) (0.0700) (0.0626) (0.0571)

First-stage F stat. 354,196.9 353,807.8 289,495.4 91,329.2
Bill HDDs F T T T
Household FE T T T T
City by month-of-sample FE T T F F
City by week-of-sample FE F F T F
Zip by week-of-sample FE F F F T
N 5,782,724 5,782,724 5,782,724 5,782,724

Notes: Each column denotes a separate regression. Errors are two-way clustered within (1) household and (2)
utility by climate-zone by billing-cycle (the level at which price varies). All regressions include heating degree
days (HDDs) within the households’ billing period. Each price in the table is the second lag of price, i.e., the
prices from two bills prior to the current bill. Avg. or average price is the total bill divided by quantity.
Significance levels: *10%, **5%, ***1%.

Table A12: Second-stage results:
Robustness to specification: Avg. mrg. price instrumented with spot price

Dependent variable: Log(Consumption, daily avg.)

(1) (2) (3) (4)

Log(Avg. marginal price) −0.2646∗∗∗ −0.1500∗∗∗ −0.1357∗∗∗ −0.1323∗∗

instrumented (0.0661) (0.0543) (0.0483) (0.0483)

First-stage F stat. 541,171.7 540,457.5 451,337.9 121,389.8
Bill HDDs F T T T
Household FE T T T T
City by month-of-sample FE T T F F
City by week-of-sample FE F F T F
Zip by week-of-sample FE F F F T
N 5,782,724 5,782,724 5,782,724 5,782,724

Notes: Each column denotes a separate regression. Errors are two-way clustered within (1) household and (2)
utility by climate-zone by billing-cycle (the level at which price varies). All regressions include heating degree
days (HDDs) within the households’ billing period. Each price in the table is the second lag of price, i.e., the
prices from two bills prior to the current bill. Avg. Mrg. or average marginal price denotes the quantity-weighted
average of the household’s marginal price. Significance levels: *10%, **5%, ***1%.
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Table A13: Second-stage results:
Robustness to specification: Simulated marginal price instrumented with spot price

Dependent variable: Log(Consumption, daily avg.)

(1) (2) (3) (4)

Log(Simulated mrg. price) −0.2641∗∗∗ −0.1719∗∗ −0.1637∗∗∗ −0.1354∗

instrumented (0.0913) (0.0743) (0.0618) (0.0767)

First-stage F stat. 97,898.2 96,831.5 91,646.3 15,809.6
Bill HDDs F T T T
Household FE T T T T
City by month-of-sample FE T T F F
City by week-of-sample FE F F T F
Zip by week-of-sample FE F F F T
N 4,864,359 4,864,359 4,864,359 4,864,359

Notes: Each column denotes a separate regression. Errors are two-way clustered within (1) household and (2)
utility by climate-zone by billing-cycle (the level at which price varies). All regressions include heating degree
days (HDDs) within the households’ billing period. Each price in the table is the second lag of price, i.e., the
prices from two bills prior to the current bill. Sim. Mrg. or simulated marginal price is the household’s marginal
price (using the relevant pricing regime) as a function of the household’s historical consumption patterns (lagged
bills 10 through 14). Significance levels: *10%, **5%, ***1%.

Table A14: Second-stage results:
Robustness to specification: Baseline price instrumented with spot price

Dependent variable: Log(Consumption, daily avg.)

(1) (2) (3) (4)

Log(Baseline price) −0.3136∗∗∗ −0.1667∗∗∗ −0.1429∗∗∗ −0.1358∗∗∗

instrumented (0.0726) (0.0600) (0.0533) (0.0497)

First-stage F stat. 724,660,0 718,718.5 598,286.8 190,744.7
Bill HDDs F T T T
Household FE T T T T
City by month-of-sample FE T T F F
City by week-of-sample FE F F T F
Zip by week-of-sample FE F F F T
N 5,782,724 5,782,724 5,782,724 5,782,724

Notes: Each column denotes a separate regression. Errors are two-way clustered within (1) household and (2)
utility by climate-zone by billing-cycle (the level at which price varies). All regressions include heating degree
days (HDDs) within the households’ billing period. Each price in the table is the second lag of price, i.e., the
prices from two bills prior to the current bill. Base or baseline price refers to the price the household pays for its
first unit (therm) of natural gas. Significance levels: *10%, **5%, ***1%.
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Table A15: Second-stage results: Extending the set of zip codes to neighboring zip codes

Dependent variable: Log(Consumption, daily avg.)

Marginal Price

(1) (2) (3) (4)
Common Zips Neighbors 1 Neighbors 2 Neighbors 3

Log(Marginal price) −0.1743∗∗∗ −0.1543∗∗∗ −0.0806∗∗ −0.0616∗

instrumented (0.0645) (0.0479) (0.0402) (0.0352)

First-stage F stat. 152,617.4 240,064.9 413,472.4 604,498.9
Bill HDDs T T T T
Household FE T T T T
City by month-of-sample FE T T T T
Levels of neighboring zip codes 0 1 2 3
N 5,782,724 12,648,457 21,305,253 30,606,756

Notes: Common zips refers the set of zip codes in which each zip code receives natural gas from both PG&E and
SoCalGas. Neighbors 1 includes the common zips and the zip codes that immediately neighbor the common zips.
Neighbors 2 adds the neighbors of these neighbors (adding the neighbors of Neighbors 1). Neighbors 3 adds the
neighbors of Neighbors 2. Figure A6 depicts these sets of zip codes. Each column denotes a separate regression.
Errors are two-way clustered within (1) household and (2) utility by climate-zone by billing-cycle (the level at
which price varies). All regressions include heating degree days (HDDs) within the households’ billing period.
Each price in the table is the second lag of price, i.e., the prices from two bills prior to the current bill.
Significance levels: *10%, **5%, ***1%.
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Table A17: Billing data description: Columns within the billing data

Feature name Description

Account ID Unique identifier for household account with the utility

Premise ID Unique physical-location based identifier

Prior read date Effectively the start date of the bill

Current read date Effectively the end date of the bill

Gas rate schedule Classifies type of customer (and the customer’s price regime)

Gas usage Volume of gas consumed during billing period (in therms)

Bill revenue Total bill charged to household for the current billing period

Climate band California Public Utility Commission-based climate region

Service address 9-digit zip Household’s 9-digit zip code

Service start date Date on which the household began service

Service stop date Date on which the household ended service
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A.3 Calculating bills

As discussed in the body of the paper, the majority of bills do not line up with calendar months.

Consequently, households’ billing periods do not line up with utilities’ monthly changes in

price (or with changes in daily allowances resulting from changes in seasons). Thus, a single

bill will typically span multiple price regimes. The two utilities deal with change in price

in subtly different ways. This “problem” results from the fact that neither utility knows

households’ daily consumption.

PG&E When a PG&E customer’s bill spans multiple calendar months (price regimes), PG&E

calculates individual bills for each month. However, because PG&E does not know the daily

consumption levels, they assume constant daily consumption throughout the billing period.

SoCalGas In the case that a SoCalGas customer’s bill spans multiple calendar months (price

regimes), SoCalGas computes time-weighted average prices (and allowances) by aggregating

the prices and allowances from the calendar months by the number of days the bill spent in

each month.

A.4 Data work

In this section, we describe the exclusion and cleaning choices that we made while preparing

the data for analysis. Our R scripts are available upon request, though the data themselves

cannot be shared due to agreements with the utilities and the IRB.

Exclusions:

• We omitted SoCalGas price data from advice letters 3644, 3680, 3695, 3807, 4053,

and 4061, as they were updated by letters 3660, 3697, 3697, 3810, 4055, and 4069,

respectively.

• We dropped pre-2008 data (PG&E and prices/allowances), as SoCalGas did not share

billing data for pre-2009 bills.

• We trimmed the shortest 2.5% and longest 2.5% bills (resulted in keeping bills of length

between 28-34 days). We did this to omit the first or last bills for a household and bills
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that were irregular for any other reasons. We applied this requirement of 28–34 days

to the current bill and the first through the third lagged bills, because we consider the

effect of lagged prices on contemporaneous consumption.

• We dropped bills missing any critical information: number of therms (quantity), revenue,

etc.

• We dropped bills outside the central 99% of data (i.e., the bill’s revenue or volume

fall in the bottom 0.5% or in the top 0.5%). Our main results apply this rule for the

contemporaneous and the first three lagged bills.

• We dropped bills whose total revenue we could not predict within five percent (using

known prices, quantities, and discounts).

• We dropped bills for exactly zero therms.

CARE status While the datasets presumably denoted CARE (California Alternate Rates for

Energy) households, we found many households not denoted as CARE households whose

charges were consistent with CARE pricing (i.e., charges were 80 percent of the standard

tariffs). We classified these households as CARE households.
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