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1 Admin

1.1 Announcements

1. We had a baby!
2. You can take your final in any 48-hour period between April 29th and May 9th.

1.2 Last section

In our previous section we (again) discussed standard errors. Specifically, we discussed the various assumptions
that we use to generate our standard errors and common violates of these assumptions… and how we can
calculate standard errors that are robust to some of these violations.
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1.2.1 Follow up

In our previous section, someone asked what happens when we calculate cluster-robust standard errors—
standard errors that allow for intra-cluster correlation of the disturbances—when in reality the disturbances are
independent.1 I wrote up some code to simulate this scenario. Note: I use a new package here (data.table).
It is one of my go-to packages, but it has a syntax that is a bit different from all the packages we’ve covered
thus far. Check out the vignette or the Github repository—they are quite helpful. In addition, Hadley Wickham
is working on a package dtplyr that provides a “data.table backend for dplyr”.
I think the sim_fun() function below is pretty cool:2 you can give sim_fun() any within-cluster variance
covariance matrix (the var_cov argument), and it will run the simulation based upon that within-cluster rela-
tionship.
# General setup ----
# Options
options(stringsAsFactors = F)

# Packages
library(data.table)
library(magrittr)
library(MASS)
library(lfe)
library(parallel)
library(ggplot2)
library(viridis)
# My ggplot2 theme
theme_ed <- theme(
legend.position = "bottom",

panel.background = element_rect(fill = NA),

# panel.border = element_rect(fill = NA, color = "grey75"),
axis.ticks = element_line(color = "grey95", size = 0.3),

panel.grid.major = element_line(color = "grey95", size = 0.3),

panel.grid.minor = element_line(color = "grey95", size = 0.3),

legend.key = element_blank())

# Function: Generate data ----
sim_fun <- function(i, n_g, g, var_cov, beta) {

# Start creating the dataset: generate X
sim_dt <- data.table(x = rnorm(n_g * g))

# Generate the disturbances (in vector form)
sim_dt[, v := mvrnorm(n = g, mu = rep(0, n_g), Sigma = var_cov) %>%

# Rows are for a single cluster, so we transpose
t() %>% c()]

# Calcualte y; add group ID
sim_dt[, `:=`(

y = beta[1] + beta[2] * x + v,

group_id = rep(1:g, each = n_g)

1A similar situation: what happens when we cluster too conservatively?
2Yes, I am a nerd.
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)]

# Spherical-error inference
est_sph <- felm(y ~ x, data = sim_dt) %>%

summary() %>% coef() %>% extract(2, 1:3)

# inference
est_het <- felm(y ~ x, data = sim_dt) %>%

summary(robust = T) %>% coef() %>% extract(2, 1:3)

# Cluster-robust inference
est_cl <- felm(y ~ x | 0 | 0 | group_id, data = sim_dt) %>%

summary() %>% coef() %>% extract(2, 1:3)

# Results data.table
res_dt <- data.table(rbind(est_sph, est_het, est_cl))

setnames(res_dt, c("est", "se", "t_stat"))

res_dt[, `:=`(

method = c("spherical", "het. robust", "cluster robust"),

iter = i)]

# Return results
return(res_dt)

}

# Simulation parameters ----
# Observations per group
n_g <- 30

# Number of groups
g <- 50

# Variance-covariance matrix (within a cluster)
var_cov <- diag(n_g)
# Define beta
beta <- c(12, 0)

# Set seed
set.seed(12345)

# Run the simulation ----
sim_dt <- mclapply(X = 1:1e4, FUN = sim_fun,

n_g, g, var_cov, beta,

mc.cores = 4) %>% rbindlist()

# Summary stats ----
sim_dt[, mean(se), by = method]

## method V1

## 1: spherical 0.02584449

## 2: het. robust 0.02581608

## 3: cluster robust 0.02566276

sim_dt[, median(se), by = method]

## method V1

## 1: spherical 0.02583014

## 2: het. robust 0.02580281
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## 3: cluster robust 0.02559041

So we see that the means andmedians of the three methods are quite close; what about the general distributions
of the standard errors?
# Plot results ----
# Distribution of standard errors
ggplot(data = sim_dt, aes(x = se, fill = method)) +

geom_density(alpha = 0.6, size = 0.1, color = "grey50") +

xlab("Standard error") +

ylab("Density") +

ggtitle("Distributions of standard errors by method",

subtitle = "Truth: spherical disturbances") +

scale_fill_viridis("Std. error method:",

discrete = T, direction = -1) +

theme_ed
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We see that while the means and medians are quite close, the distributions vary considerably in their tails.
To see this point from a different perspective, let’s plot pairs of standard errors, where the x-axis is the spherical
error (correct in this simulation) and the y-axis is the cluster-robust standard error.
# Pairs of spherical and cluster-robust SE
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pair_dt <- merge(
x = sim_dt[method == "spherical", list(se_sp = se, iter)],

y = sim_dt[method == "cluster robust", .(se_cl = se, iter)],

by = "iter")

# The plot
ggplot(data = pair_dt, aes(x = se_sp, y = se_cl)) +

geom_point(alpha = 0.3, size = 0.4) +

stat_smooth(method = "lm", se = F) +

xlab("Spherical S.E. (correct)") +

ylab("Cluster-robust S.E. (arbitrary clusters)") +

ggtitle("Comparing spherical and cluster-robust standard errors",

subtitle = "When disturbances are spherical") +

scale_fill_viridis("Std. error method:",

discrete = T, direction = -1) +

theme_ed +

coord_equal()
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The reason for the strange dimensions in the plot here: I am forcing the axes to have equal units, which
emphasizes the much greater dispersion of the cluster-robust standard errors. The best-fit (blue) line is quite
close to the 45-degree line (omitted): the cluster-robust errors are consistent for the true (spherical) standard
errors, but they add a lot of noise (due to the off-diagonal entries).

1.3 This week

This week we will discuss instrumental variables (IV)—one of the most frequently used tools of an applied
econometrician.

1.4 What you will need

Packages:
• New:

– None!
• Old:

– dplyr, lfe, magrittr, MASS

2 Instrumental variables

In the last few sections, we’ve discussed what happens when we violate the spherical errors assumption: our
estimator for the standard errors (or variance-covariance matrix of the coefficients) is inconsistent.
This week, we think about what happens if we violate the strict exogeneity (or population orthogonality) as-
sumption. Recall the strict exogeneity assumption

E [εi|X] = 0

and the (weaker) population orthogonality assumption

E [xiεi] = 0

When might violations of these assumptions arise? As you saw in class, the most common scenarios in which
econometricians apply instrumental variables are

1. omitted variables
2. simultaneous equations
3. measurement error in your covariates

2.1 Omitted variables problem

We first discussed the problem of omitted-variable bias (OVB) back in section 4 while thinking about the Frisch-
Waugh-Lovell theorem. The good news: we now have a potential antidote: instrumental variables.
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Let’s set up a simple framework for omitted-variable bias. Consider the data-generating process

y = β0 + β1x1 + β2x2 + ε

In order to keep things simple, we will assume x1 and x2 are uncorrelated with ε. We will also assume x1 and
x2 are correlated, Cov (x1, x2) ̸= 0, and βi ̸= 0 for each i. Finally, assume the researcher does not observe
x2.
Why wouldn’t the researcher observe x2—an obviously important variable? One reason is that we do not always
know which variables predict y and correlate with other covariates. Another reason is that we do not always
get all the data that we want. In either situation, we eventually end up with some variables in the regression
and some variables left out.
So what happens if the researcher omits x2 and simply regresses y on x1 (and an intercept)?

y = θ0 + θ1x1 + ν

Will θ1 (the coefficient on x1 in the regression that omits x2) be equal to β1 (the coefficient on x1 i in the
regression that does not omit x2)? Returning to our Frisch-Waugh-Lovell notes: no. Why? In the language of
an econometrician: x1 is now endogenous—it is correlated with the error term.
How do we know x1 is correlated with the error term? We know this fact because ν = β2x2 + ε and because
x1 and x2 are correlated (by assumption). In other (mathematical) words,

Cov (x1, ν) = Cov (x1, β2x2 + ε)
= β2 Cov (x1, x2) + Cov (x1, ε)
= β2 Cov (x1, x2)
̸= 0

Thus, our covariate is correlated with our disturbance, violating population orthogonality. What’s the big deal?
We can no longer assume the OLS estimator for β is consistent. Not good.
For a slightly different view: recall from our section on the Frisch-Waugh-Lovell theorem that when we regress
y on x1 and x2, the estimate for β1 (the coefficient on x1) is

b1 =
(
X′

1X1
)−1 X′

1y −
(
X′

1X1
)−1 X′

1X2b2

The second term in the difference reminds us that we will calculate a different (wrong/inconsistent) coefficient
if we omit x2 when (1) x1 and x2 have non-zero covariance (i.e., X′

1X2 ̸= 0) and (2) y and x2 have non-
zero covariance (e.g., b2 ̸= 0). More succinctly: if x1 and x2 are not orthogonal, and if y and x2 are not
orthogonal, then if you omit x2 from your regression of y and x1, your estimate for β1 is inconsistent/biased.
The inconsistency/bias comes from the effect of x2 “loading” onto x1 when you fail to explicitly control for x2.
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2.2 Omitted variables solution

So what do we do when we reach a point in our research where we believe we have a problem with an omitted
variable? Find an instrument!3

What is an instrumental variable (IV)? An instrument is a variable that is correlated with the “good” (or “ex-
ogenous”) variation in x1 but is uncorrelated to the “bad” (or “endogenous” or “related-to-x2”) variation in x1.
More formally, an IV is a variable (we will call it z) that satisfies the following two properties:

1. Cov (z, x1) ̸= 0
2. Cov (z, ν) = 0

The first condition requires that z is predictive of (correlated with) x1. Recall that we are trying to isolate the
relationship between y and x1 (i.e., β1). If z and x1 are uncorrelated, it is going to be pretty tough to learn
anything about β1.
The second condition—commonly referred to as the exclusion restriction—requires that our instrument z is
uncorrelated with the error term ν, which in turn requires that our instrument z is uncorrelated with any
omitted variables (e.g., x2) and the stochastic disturbance ε.
Satisfying only one of these conditions is easy. With regards to the first condition, many variables correlate
with x1, including x1 and x1 + 1. With regards to the second condition, we could just simulate a random
variable—it will be uncorrelated with ν. The real challenge in finding a valid instrumental—and it really is
a challenge in many settings—is finding a variable that satisfies both conditions. Another complexity is that
we cannot even test the requirement (the exclusion restriction), since ν is unknown. For these reasons, you
should think carefully about research—yours or others’—that utilizes instrumental variables. There are some
good instruments out there, but there are even more bad ones. However, when you find a good instrument, it
is a very valuable tool.4

Some unsolicited advice: Don’t be jerk when people discuss their instruments/empirical strategies. Think care-
fully about why the instrument may or may not be valid (see requirements above). If the instrument seems to
fail one of the requirements, kindly ask what you are missing. And try to make some constructive comments.
Economics seminars can get a bit intense; try to take the high road.

2.3 IV in practice

What does instrumental variables look like in practice? The estimator is actually quite simple:

β̂IV =
(
Z′X

)−1 Z′y

Here, Z is the matrix of your exogenous variables: your intercept and the instrument(s).
• In the simple case where we only have one covariate x1 that we instrument with z, this Z matrix will

have a column of ones for the intercept and a column for the instrument z.
• If had an additional covariate x3 that you believe is exogenous, then it acts as its own instrument—you

would have a column for x3 in both Z and in X.
3I guess you have two other options: give up or continue your research knowing you have inconsistent estimates for your parameters

of interest.
4One of the most memorable instruments that I’ve seen is the Scrabble score of an individual’s name (Biavaschi et al., 2013). You

can decide for yourself if the Scrabble-score instrument fulfills both requirements for a valid instrument by checking out the paper.
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Let’s check instrumental variables out in R. First, we will load dplyr and some of our previous functions.
library(dplyr)

# Function to convert tibble, data.frame, or tbl_df to matrix
to_matrix <- function(the_df, vars) {

# Create a matrix from variables in var
new_mat <- the_df %>%

# Select the columns given in 'vars'
select_(.dots = vars) %>%

# Convert to matrix
as.matrix()

# Return 'new_mat'
return(new_mat)

}

# Function for OLS coefficient estimates
b_ols <- function(y, X) {

# Calculate beta hat
beta_hat <- solve(t(X) %*% X) %*% t(X) %*% y

# Return beta_hat
return(beta_hat)

}

# Function for OLS coef., SE, t-stat, and p-value
ols <- function(data, y_var, X_vars, intercept = T) {

# Turn data into matrices
y <- to_matrix(data, y_var)

X <- to_matrix(data, X_vars)

# Add intercept
if (intercept == T) X <- cbind(1, X)

# Calculate n and k for degrees of freedom
n <- nrow(X)
k <- ncol(X)
# Estimate coefficients
b <- b_ols(y, X)

# Update names
if (intercept == T) rownames(b)[1] <- "Intercept"

# Calculate OLS residuals
e <- y - X %*% b

# Calculate s^2
s2 <- (t(e) %*% e) / (n-k)

# Inverse of X'X
XX_inv <- solve(t(X) %*% X)

# Standard error
se <- sqrt(s2 * diag(XX_inv))
# Vector of _t_ statistics
t_stats <- (b - 0) / se

# Calculate the p-values
p_values = pt(q = abs(t_stats), df = n-k, lower.tail = F) * 2

# Nice table (data.frame) of results
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results <- data.frame(
# The rows have the coef. names
effect = rownames(b),
# Estimated coefficients
coef = as.vector(b),
# Standard errors
std_error = as.vector(se),
# t statistics
t_stat = as.vector(t_stats),
# p-values
p_value = as.vector(p_values)
)

# Return the results
return(results)

}

# Function that demeans the columns of Z
demeaner <- function(N) {

# Create an N-by-1 column of 1s
i <- matrix(data = 1, nrow = N)

# Create the demeaning matrix
A <- diag(N) - (1/N) * i %*% t(i)
# Return A
return(A)

}

# Function to return OLS residuals
resid_ols <- function(data, y_var, X_vars, intercept = T) {

# Require the 'dplyr' package
require(dplyr)
# Create the y matrix
y <- to_matrix(the_df = data, vars = y_var)

# Create the X matrix
X <- to_matrix(the_df = data, vars = X_vars)

# Bind a column of ones to X
if (intercept == T) X <- cbind(1, X)

# Calculate the sample size, n
n <- nrow(X)
# Calculate the residuals
resids <- y - X %*% b_ols(y, X)

# Return 'resids'
return(resids)

}

# Function for OLS coef., SE, t-stat, and p-value
vcov_ols <- function(data, y_var, X_vars, intercept = T) {

# Turn data into matrices
y <- to_matrix(data, y_var)

X <- to_matrix(data, X_vars)

# Add intercept
if (intercept == T) X <- cbind(1, X)
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# Calculate n and k for degrees of freedom
n <- nrow(X)
k <- ncol(X)
# Estimate coefficients
b <- b_ols(y, X)

# Update names
if (intercept == T) rownames(b)[1] <- "Intercept"

# Calculate OLS residuals
e <- y - X %*% b

# Calculate s^2
s2 <- (t(e) %*% e) / (n-k)

# Inverse of X'X
XX_inv <- solve(t(X) %*% X)

# Return the results
return(as.numeric(s2) * XX_inv)

}

For now we are going to stick to the case where the true data-generating process is

y = β0 + β1x1 + β2x2 + ε

To generate an omitted-variable situation with an instrument z, we need to create a dataset such that
• x2 is unobserved,
• Cov (x1, x2) = σ1,2 ̸= 0,
• Cov (x1, z) = σ1,z ̸= 0, and
• Cov (x2, z) = 0.

More succinctly, we want to generate the variables x1, x2, and z from a variance-covariance matrix

 1 σ1,2 σ1, z
σ1,2 1 0
σ1,z 0 1


where I’ve arbitrarily decided the variances of x1, x2, and z are equal to one. This matrix emphasizes the
challenges with finding a valid instrument.
This simulation will be a lot like previous simulations—including the one at the beginning of these notes. We
will use the mvrnorm() function from the MASS package to generate 10,000 samples of our three variables from
a multivariate normal distribution with the variance-covariance structure described above.5

# Set the seed
set.seed(12345)
# Define our sample size
n <- 1e4

# Define beta
beta <- c(5, 2, -3)

# Define the means of x1, x2, and z

5We will arbitrarily define σ1,2 = 0.75 and σ1,z = 0.25. Also: µx1 = 5, µx2 = 10, µz = −5.

13



mean_vec <- c(5, 10, -5)

# Define the var-cov matrix
vcov_mat <- matrix(data =

c(1, 0.75, 0.25, 0.75, 1, 0, 0.25, 0, 1),

nrow = 3)

# Generate the data for x1, x2, and z
gen_df <- mvrnorm(n = n, mu = mean_vec, Sigma = vcov_mat,

empirical = T) %>% tbl_df()
# Change names
names(gen_df) <- c("x1", "x2", "z")

# Generate the error term and calculate y
gen_df %<>% mutate(
e = rnorm(n),
y = beta[1] + beta[2] * x1 + beta[3] * x2 + e)

Just to make sure everything worked:
select(gen_df, x1, x2, z, e) %>% cor()

## x1 x2 z e

## x1 1.00000000 7.500000e-01 2.500000e-01 0.0116999490

## x2 0.75000000 1.000000e+00 -2.538700e-16 0.0051329951

## z 0.25000000 -2.538700e-16 1.000000e+00 0.0008299724

## e 0.01169995 5.132995e-03 8.299724e-04 1.0000000000

Looking good!
If we regress y on x1 and x2, we do not have an omitted-variable problem—we should have a consistent
estimator for β.
ols(data = gen_df, y_var = "y", X_vars = c("x1", "x2"))

## effect coef std_error t_stat p_value

## 1 Intercept 4.997277 0.10605703 47.11877 0

## 2 x1 2.017723 0.01493354 135.11345 0

## 3 x2 -3.008222 0.01493354 -201.44061 0

Great! Now let’s see what happens when we omit x1 or x2:
# Omitting x2
ols(data = gen_df, y_var = "y", X_vars = "x1")

## effect coef std_error t_stat p_value

## 1 Intercept -13.804111 0.11327928 -121.85910 0.000000e+00

## 2 x1 -0.238444 0.02221594 -10.73302 9.957953e-27

# Omitting x1
ols(data = gen_df, y_var = "y", X_vars = "x2")

## effect coef std_error t_stat p_value

## 1 Intercept -0.04702974 0.16687272 -0.28183 0.7780797

## 2 x2 -1.49493016 0.01660446 -90.03182 0.0000000
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Just as we expected, omitted-variable bias rears its ugly head. When we omit one of the covariates, we no
longer have a consistent estimator for β, due to the fact that the covariates are correlated.
Let’s write a quick function that calculates the IV estimator bIV.
# Function for IV coefficient estimates
b_iv <- function(data, y_var, X_vars, Z_vars, intercept = T) {

# Turn data into matrices
y <- to_matrix(data, y_var)

X <- to_matrix(data, X_vars)

Z <- to_matrix(data, Z_vars)

# Add intercept
if (intercept == T) X <- cbind(1, X)

if (intercept == T) Z <- cbind(1, Z)

# Calculate beta hat
beta_hat <- solve(t(Z) %*% X) %*% t(Z) %*% y

# Update names
if (intercept == T) rownames(beta_hat)[1] <- "Intercept"

# Return beta_hat
return(beta_hat)

}

Now we will estimate β1 via instrumental variables!
b_iv(data = gen_df, y_var = "y", X_vars = "x1", Z_vars = "z")

## y

## Intercept -25.012727

## x1 2.003279

Nice—this IV stuff seems to be working! Let’s check our work with the felm() function. As we discussed
previously, the syntax for felm() is a bit strange. However, it does allow for estimating using instrumental
variables. Specifically, recall that the syntax is felm(regression formula | fixed effects | IV formula

| variables for clustering). Note that you want to put your IV formula in parentheses.
# Checking our work with 'felm'
felm(y ~ 1 | 0 | (x1 ~ z) | 0, data = gen_df) %>%

summary() %>% coef()

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) -25.012727 0.6320351 -39.57490 2.464953e-318

## `x1(fit)` 2.003279 0.1262493 15.86764 5.109912e-56

Perfect.

3 Two-stage least squares

As Max showed you in class, there is a more general framework for working with instrumental variables: two-
stage least squares (2SLS). In the special case that you have exactly one endogenous covariate with exactly one
instrumental variable, bIV and b2SLS are exactly the same.
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Not only is 2SLS an awesome tool when you have multiple endogenous covariates or multiple instruments, its
two stages also help build intuition for what is going on with this whole instrumental variables thing.

3.1 The two stages

In the first stage of 2SLS, we regress our covariates on the instruments (again, non-endogenous covariates are
their own instruments). Returning to the case where x1 is endogenous, the first stage looks like:

x1 = γ0 + γ1z + u

We then use the fitted values from the first stage—i.e., x̂1 = γ̂0 + γ̂1z—as the covariates in the second stage:

y = β0 + β1x̂1 + v

If we have a valid instrument, then our estimate of β1 in the second stage is consistent for β1.
So what is going on here? The first stage is purging the “bad variation” in x1. By regressing x1 on a variable
that is uncorrelated with our omitted variable(s), we are keeping only the variation in x1 that is exogenous—
uncorrelated with the error term. Then, when we use this purged version of x1 (x̂1) in the second stage, we
no longer violate population orthogonality. Consistent estimates!
Finally, keep in mind that variables in your second stage either need an instrument or act as their own instru-
ment.

3.2 In R

Let’s write up a function for two-stage least squares in R.
# Function for IV coefficient estimates
b_2sls <- function(data, y_var, X_vars, Z_vars, intercept = T) {

# Turn data into matrices
y <- to_matrix(data, y_var)

X <- to_matrix(data, X_vars)

Z <- to_matrix(data, Z_vars)

# Add intercept
if (intercept == T) X <- cbind(1, X)

if (intercept == T) Z <- cbind(1, Z)

# Estimate the first stage
b_stage1 <- solve(t(Z) %*% Z) %*% t(Z) %*% X

# Fit the first stage values
X_hat <- Z %*% b_stage1

# Estimate the second stage
b_stage2 <- solve(t(X_hat) %*% X_hat) %*% t(X_hat) %*% y

# Update names
if (intercept == T) rownames(b_stage2)[1] <- "Intercept"

# Return beta_hat
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return(b_stage2)
}

Now we’ll run the function:
b_2sls(data = gen_df, y_var = "y", X_vars = "x1", Z_vars = "z")

## y

## Intercept -25.012727

## x1 2.003279

Excellent. The estimate using two-stage least squares (b2SLS) matches our previous instrumental variables
estimate (bIV). As I mentioned above, this happens when we have one (endogenous) covariate and one instru-
ment.

3.3 The forbidden regression

Pretty impressive name, right? There is some disagreement about what actually constitutes the forbidden re-
gression, but the two contexts in which you will see forbidden regressions are:

1. You use a nonlinear predictor in your first stage, e.g., probit, logit, Poisson, etc. You need linear OLS in
the first stage to guarantee that the covariates and fitted values in second stage will be uncorrelated with
the error (exogenous).

2. Your first stage does not match your second stage, e.g.,
• You use different fixed effects in the two stages
• You use a different functional form of the endogenous covariate in the two stages, e.g., x in the first

stage and x̂2 in the second stage.6

In both cases, the forbidden regressions do not provide consistent estimates for the parameters because you
have failed to isolate the good variation from the bad variation.

3.4 Reduced form

We’ve covered the first stage and second stage of two-stage least squares. There is one additional regression
that you will commonly see with instrumental variables and 2SLS: the reduced form.
The basic idea of the reduced form is that you have an outcome of interest y, and you have exogenous varia-
tion in some variable z (your instrument). Assuming you have a valid instrument, regressing y on z satisfies
population orthogonality and thus provides a consistent estimate of the effect of z and y.
The reduced form:

y = π0 + π1z + w

It turns out that you can estimate βIV (or β2SLS in the case of one endogenous covariate with one instrument)
via the ratio of the coefficients from the reduced form and the first stage. Specifically, if you have

• First stage: x = γ0 + γ1z + u

6Note: If you have x and x2 in your first stage, and you are instrumenting x with z, then you should also instrument x2 with z2.
You might be tempted to predict x with z and then square the prediction in the second stage; this method is wrong.
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• Second stage: y = β0 + β1x̂ + v
• Reduced form: y = π0 + π1z + w

then

β̂1, IV = π̂1
γ̂1

Let’s confirm this fact in R. Wewill estimate the first stage (regressing x1 on z) and the reduced form (regressing
y on z) using our old-fashioned OLS function. We will just grab the point estimates and will also ignore the
intercept (hence the coef[2], below).
# The first stage
b_fs <- ols(gen_df, "x1", "z") %$% coef[2]

# The reduced form
b_rf <- ols(gen_df, "y", "z") %$% coef[2]

# Calculate the ratio
b_rf / b_fs

## [1] 2.003279

# Compare to beta-hat IV
b_iv(gen_df, "y", "x1", "z")

## y

## Intercept -25.012727

## x1 2.003279

Victory!
So what is the intuition here? Think about the individual steps. The reduced form essentially estimates the
effect of our instrument z on our outcome y. The first stage estimates the effect of the instrument z on our
endogenous covariate x1. We actually want the effect of x1 on y, so we scale the effect of z on y by the effect
of z on x—we use the first-stage result to adjust the reduced-form result in order to get back to the effect of
our endogenous covariate on our outcome variable.
This nice ratio trick only works in the one-endogenous-covariate-one-instrument case.

3.5 Matrix form

As you may have figured out by now, instrumental variables (βIV) is a special case of 2SLS. Whether you have
multiple endogenous covariates and multiple instruments (including the case where some variables instrument
for themselves) ormultiple instruments for a single endogenous covariate, 2SLSwill provide youwith consistent
estimates of β—provided your instruments are valid.
While you can estimate 2SLS with the two-step procedure we discussed and used above, you can also collapse
the two stages into a single matrix formula:

b2SLS =
(
X′PZX

)−1 X′PZy

where
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PZ = Z
(
Z′Z

)−1 Z′

Let’s update our b_2sls() function.
# Function for IV coefficient estimates
b_2sls <- function(data, y_var, X_vars, Z_vars, intercept = T) {

# Turn data into matrices
y <- to_matrix(data, y_var)

X <- to_matrix(data, X_vars)

Z <- to_matrix(data, Z_vars)

# Add intercept
if (intercept == T) X <- cbind(1, X)

if (intercept == T) Z <- cbind(1, Z)

# Calculate P_Z
P_Z <- Z %*% solve(t(Z) %*% Z) %*% t(Z)
# Calculate b_2sls
b <- solve(t(X) %*% P_Z %*% X) %*% t(X) %*% P_Z %*% y

# Update names
if (intercept == T) rownames(b)[1] <- "Intercept"

# Return b
return(b)

}

And run it:
b_2sls(gen_df, "y", "x1", "z")

## y

## Intercept -25.012727

## x1 2.003279

If you end up in a situation where you have multiple instruments for your endogenous covariate, then you
cannot use the IV estimator—you have to us 2SLS. Why? Well, for one, the matrices that make up your βIV
will no longer be conformable:

βIV =
(
Z′X

)−1 Z′y

If you have two instruments for your endogenous covariate, then Z′ is (k + 1) × n, and X is n × k—
nonconformable.
On the other hand, the 2SLS estimator is perfectly fine with this situation.
One more thing to note: our estimate for the intercept is not consistent. Luckily, we rarely care about the
intercept.

3.6 More standard errors

Ha! You thought we finished standard errors. Nope! We still need standard errors for our 2SLS point estimates.
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Two-stage least squares will generate (weakly) larger standard errors than OLS, i.e.7

Var (b2SLS) = σ2 (
X′PZX

)−1 ≥ σ2 (
X′X

)−1 = Var (bOLS)

The basic intuition behind this result is that 2SLS separates good and bad variation, while OLS uses all of the
variation. Access to more variation yields smaller standard errors. Thus, standard errors from 2SLS will be at
least as large as the standard errors from OLS.
We can estimate the variance-covariance matrix for b2SLS fairly easily. As given above, the variance-covariance
matrix of b2SLS is Var (b2SLS) = σ2 (X′PZX)−1. We know X and PZ. And we know how to estimate σ2, i.e.,

σ̂2 = e′e
n

The residuals here follow our standard definition of residuals, i.e., e = y − Xb2SLS. These residuals are not
the residuals from the second stage.
Let’s add standard errors (and t statistics and p-values) to our 2SLS function.
# Function for IV coefficient estimates
b_2sls <- function(data, y_var, X_vars, Z_vars, intercept = T) {

# Turn data into matrices
y <- to_matrix(data, y_var)

X <- to_matrix(data, X_vars)

Z <- to_matrix(data, Z_vars)

# Calculate n and k for degrees of freedom
n <- nrow(X)
k <- ncol(X)
# Add intercept
if (intercept == T) X <- cbind(1, X)

if (intercept == T) Z <- cbind(1, Z)

# Calculate P_Z
P_Z <- Z %*% solve(t(Z) %*% Z) %*% t(Z)
# Calculate b_2sls
b <- solve(t(X) %*% P_Z %*% X) %*% t(X) %*% P_Z %*% y

# Calculate OLS residuals
e <- y - X %*% b

# Calculate s2
s2 <- (t(e) %*% e) / (n - k)

# Inverse of X' Pz X
XX_inv <- solve(t(X) %*% P_Z %*% X)

# Standard error
se <- sqrt(s2 * diag(XX_inv))
# Vector of _t_ statistics
t_stats <- (b - 0) / se

# Calculate the p-values
p_values = pt(q = abs(t_stats), df = n-k, lower.tail = F) * 2

7To show this fact, use the linear algebra fact that X′WX = X′WWX = X′W′WX = (WX)′ (WX) ≥ 0 for any
symmetric, idempotent matrix W—and remember that PZ is a symmetric and idempotent matrix.
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# Update names
if (intercept == T) rownames(b)[1] <- "Intercept"

# Nice table (data.frame) of results
results <- data.frame(

# The rows have the coef. names
effect = rownames(b),
# Estimated coefficients
coef = as.vector(b),
# Standard errors
std_error = as.vector(se),
# t statistics
t_stat = as.vector(t_stats),
# p-values
p_value = as.vector(p_values)
)

# Return the results
return(results)

}

Let’s check our function against felm() (again):
# Our function
b_2sls(gen_df, "y", "x1", "z")

## effect coef std_error t_stat p_value

## 1 Intercept -25.012727 0.6320035 -39.57688 2.291852e-318

## 2 x1 2.003279 0.1262430 15.86844 5.046509e-56

# And felm
felm(y ~ 1 | 0 | (x1 ~ z), data = gen_df) %>%

summary()

##

## Call:

## felm(formula = y ~ 1 | 0 | (x1 ~ z), data = gen_df)

##

## Residuals:

## Min 1Q Median 3Q Max

## -11.1641 -2.1492 -0.0242 2.1296 11.5823

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) -25.0127 0.6320 -39.58 <2e-16 ***

## `x1(fit)` 2.0033 0.1262 15.87 <2e-16 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 3.156 on 9998 degrees of freedom

## Multiple R-squared(full model): -0.9954 Adjusted R-squared: -0.9956

## Multiple R-squared(proj model): -0.9954 Adjusted R-squared: -0.9956
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## F-statistic(full model):251.8 on 1 and 9998 DF, p-value: < 2.2e-16

## F-statistic(proj model): 251.8 on 1 and 9998 DF, p-value: < 2.2e-16

## F-statistic(endog. vars):251.8 on 1 and 9998 DF, p-value: < 2.2e-16

Looking good!
At least the standard errors look good… what is going on with the R2 values for felm()? The short answer is
that R2 is essentially meaningless for IV estimation. Recall the equation for R2 back from our OLS days:

R2 = 1 − SSR
SST = 1 −

∑
i (yi − xibOLS)2∑

i (yi − ȳ)2

As we discussed above, we need to use X when calculating the residuals—as opposed to X̂. Substituting b2SLS
into the R2 equation, we now have

R2 = 1 − SSR
SST = 1 −

∑
i (yi − xib2SLS)2∑

i (yi − ȳ)2

If SSR exceeds SST, then we will calculate a negative R2. Why can this case happen in 2SLS and not in OLS?
In OLS, the model nests the intercept-only model, so SSR will always be less than SST. In 2SLS, the residuals
no longer come from a model that nests the constant-only model: the point estimates in b2SLS come from the
second stage (which involves X̂), while the residuals used in calculating R2 come from applying b2SLS to X.

3.7 Caveat utilitor

Finding a good instrument is a difficult task. You can test the strength of your first stage, but you will need some
good reasons that your instrument satisfies the exclusion restriction. And economists can be a tough group to
satisfy (see my comments above on being a constructive member of society).
Your best-case scenario for a valid instrument is usually some sort of RCT.8 Imagine you want to test the effect of
rural electrification on income. Simply regressing income on electrification status is probably not a good idea:
you can imagine there is at least one omitted variable. If you’re lucky/clever, youmight be able to convince some
government to randomly allocate connection subsidies to households. Because the subsidies were randomized,
they are exogenous. However, regressing income on these random subsidies does not answer our initial question
about the effect of electrification on income. However, if these subsidies change the probability that a household
gets connected to the grid, then we can use the subsidies as an instrument for electrification. Regressing
electrification on the subsidies is the first stage. We can then use the predictions from this first stage to estimate
the (causal) effect of electrification on income.9

While 2SLS is great when combined with experiments, most of us won’t be using it strictly in a randomized
experimental setting. In these non-experimental settings, you need to be even more careful when implementing
2SLS/instrumental variables. The exclusion restriction is very important and untestable. One way to provide
some evidence of the legitimacy of your 2SLS estimates is to show the OLS (non-instrumented) regression

8It’s often helpful to think about your ideal research design, even if there’s no reason/hope of running such an experiment.
9We call the estimated effect of subsidies on income (the reduced form) the intent-to-treat estimate (ITT). We call the effect of

electricity on income the average treatment effect (ATE). In the case of IV/2SLS, the ATE is actually a local average treatment effect
(LATE), because our effect is based upon the subset of people who moved from no electricity to electricity due to the subsidy. Check
out Michael Anderson’s class (ARE 213) for more information.
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alongside the 2SLS (instrumented) regression. If there is indeed omitted variable bias (or simultaneity)—and
if your instrument has some legitimacy—then the the OLS and 2SLS estimates will differ. If the difference is
consistent with some economic reasoning, you have even more plausibility.
In short: instrumental variables/2SLS requires some humility, creativity, and caution.

3.8 Measurement error

You might be aware of this fact: data are not always perfect. In fact, when we start delving deep into our data,
it is often frightening how messy they are. It turns out that one of the original implementations of IV was as a
solution to measurement error. In this case, the exclusion restriction is often a bit less difficult to swallow, and
the first stage is generally quite strong.
Let’s consider an example. There are two weather stations. Let’s creatively name them A and B. Each weather
station measures the actual temperature with some error. If we think the stations’ measurement errors are
independent, then we can instrument one station’s data with data from the other station.10

Suppose station A is closer to our village than station B, so we want to use the data from station A. However,
we also know there is some measurement error, which will tend to attenuate our estimates for the effect of
temperature. Specifically, assume we are interested in the effect of temperature on income. We will define the
true data-generating process as11

Income = β0 + β1Temperature + ε

In addition, assume that the temperature measured at station A follows the DGP

TemperatureA = Temperature + ν

where Cov (ν, Temperature) = 0, Cov (ε, Temperature) = 0, and Cov (ν, ε) = 0. In other words, we have
classical measurement error. As we said above, if we regress income on station A’s temperature, then our point
estimate will be biased toward zero (attenuation bias).
From where does the bias come? We can frame this issue as an omitted variable problem:

Income = β0 + β1Temperature + ε

= β0 + β1 (TemperatureA − ν) + ε

= β0 + β1TemperatureA − β1ν + ε

= β0 + β1TemperatureA + ω

Clearly, TemperatureA = Temperature + ν is correlated with the error term ω = β1ν + ε, which means we
will not achieve consistent estimates of the effect of temperature on income if we use OLS to regress income
on temperature at station A. Luckily, we have a solution: instrument the temperature at station A with the
temperature at station B.
Let’s assume the DGP for station B’s temperature is

10See Maccini and Yang, 2009 for an example of this technique.
11Don’t worry; I’m not saying temperature has a linear effect on income—this is just an example.
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TemperatureB = Temperature + η

and consistent with classical measurement error: Cov (η, Temperature) = 0, Cov (ν, η) = 0, and Cov (η, ε) =
0. Consequently, Cov (TemperatureB, ε) = 0 (the exclusion restriction), and Cov (TemperatureA, TemperatureB) ̸=
0 (existence of a first stage)—temperature at station B is a valid instrument for temperature at station A.
Let’s cook up some data to see how instrumenting station A’s data with station B’s data works:
# Sample size
n <- 1e4

# Set seed
set.seed(12345)
# Generate data
temp_df <- data.frame(
true_temp = rnorm(n),
# Disturbance
e = rnorm(n),
# Measurement error, station A
e_a = rnorm(n),
# Measurement error, station A
e_b = rnorm(n)
)

# Add more variables
temp_df %<>% mutate(
temp_a = true_temp + e_a,

temp_b = 3 + true_temp + e_b,

income = 50 + 3 * true_temp + e

)

Now let’s run three regressions: (1) the regression that matches the DGP (temperature without measurement
error); (2) regress income on station A’s temperature (should be biased toward zero); (3) instrument station
A’s temperature with station B’s temperature.
# OLS for DGP
ols(temp_df, "income", "true_temp")

## effect coef std_error t_stat p_value

## 1 Intercept 49.997704 0.009866772 5067.281 0

## 2 true_temp 3.015444 0.009868744 305.555 0

# OLS for DGP
ols(temp_df, "income", "temp_a")

## effect coef std_error t_stat p_value

## 1 Intercept 49.982446 0.02358063 2119.63991 0

## 2 temp_a 1.508064 0.01675688 89.99667 0

# 2SLS
b_2sls(temp_df, "income", "temp_a", "temp_b")

## effect coef std_error t_stat p_value
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## 1 Intercept 49.968983 0.03203390 1559.87841 0

## 2 temp_a 3.048674 0.04568209 66.73674 0

There you have it: measurement error really biases our estimated effect toward zero, but 2SLS (with a valid
instrument) helps us to get back to a consistent estimate of the parameter.

4 Fun tools: Tyme

Tyme is a great little app that allows you to track the time you spend in various projects/categories—and it
works across many devices (only for Mac and iOS; Windows users, check out toggl). It may seem a little over-
the-top, but I started tracking various components of my time in the first year of the PhD program. I’ve found
it really helps me get a better sense of where my time goes. We all say we’re busy and we don’t have time to do
x, but tracking your time helps you see why you don’t have time (or more accurately: where you are putting
you time). One of my biggest takeaways: hitting 20 hours of research in a week takes a lot of discipline.

My Tyme.
Finally, if you want to see someone who really takes tracking time seriously: check out Nicolas Feltron’s annual
reports, e.g., 2013.
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