
Section 14: Simultaneous Equations Models
Ed Rubin

Contents

1 General notes 1

2 The canonical example 1

3 The general problem 2
3.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
3.2 Identification: The problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.3 Identification: The solution(s) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.4 Checking identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4 Simultaneous simulation 7
4.1 Parameterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.2 Generate data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.3 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.4 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1 General notes

I really like Woolridge for this material. His notation is a bit different from the notes and Greene, but his
writing is really clean and simple.

2 The canonical example

In many settings, the relationships we wish to investigate are more complex than a simple one-equation lin-
ear regression of yt on an intercept and an exogenous variable xt. We’ve already discussed one example of
further complexity—when xi is endogenous—during our instrument variables (IV) and two-stage least squares
(2SLS) section. We now consider a second, more general setting wherein the relationships that we wish to
econometrically explore are caught up in a system of equations.

One of the classic examples, which Max already showed you in class, is the system of demand and supply for
a good:

Demand: qd,t = α0 + α1pt + εd,t

Supply: qs,t = β0 + β1pt + εs,t

Equilibrium: qd,t = qs,t = qt

These equations are known as the structural equations for the system—they hold the structural parameters that
we would like to estimate.
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We can simplify the system by substituting in the third market-clearing equation into the other two equations

Demand: qt = α0 + α1pt + εd,t

Supply: qt = β0 + β1pt + εs,t

The challenge here is that we are unable to separate demand shocks from supply shocks—meaning price and
quantity (our variables of interest) are correlated with both error terms and are thus endogenous. To see this
fact, solve for pt and qt:

pt = β0 − α0
α1 − β1

+ εd,t − εs,t

α1 − β1

qt = α1β0 − α0β1
α1 − β1

+ α1εd,t − β1εs,t

α1 − β1

Thus price is a function of both supply and demand shocks (make sense)—as is quantity. What we need is a
lever (perhaps instrument?) that is exclusive to one channel—either supply or demand. If this lever only affect
supply, then we will observe different sets of quantity and price without any movement in the demand curve.
We can then use these different sets of quantity and price to trace out the demand curve. More formally: we
need a variable xt that moves around supply without affecting demand.1

Demand: qt = α0 + α1pt + εd,t

Supply: qt = β0 + β1pt + β2xt + ζs,t

Now we have a hope of estimating the structural demand parameters. However, we still will not be able to
consistently estimate the structural supply parameters.

3 The general problem

Let’s setup a more general formulation for estimating systems of equations.

3.1 Setup

In general, we will write a system of M simultaneous equations for M endogenous variables y1,t, …, yM,t and
K exogenous variables2 x1,t, …, xK,t in its structural form as:3

γ11y1,t + · · · + γM1yM,t + · · · + β11x1,t + · · · + βK1xK,t =ε1,t

γ12y1,t + · · · + γM2yM,t + · · · + β12x1,t + · · · + βK2xK,t =ε2,t

...

γ1M y1,t + · · · + γMM yM,t + · · · + β1M x1,t + · · · + βKM xK,t =εM,t

which we can write more succinctly as
y′

tΓ + x′
tB = ε′

t

1This requirement should sound pretty familiar, i.e., our old friend the exclusion restriction.
2One of these exogenous (a.k.a. predetermined) variables should be an intercept.
3I’m following Max’s notation here. Woolridge differs.
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We can solve this system for the M endogenous variables y by post-multiplying by Γ−1:

y′
tΓ + x′

tB = ε′
t

y′
tΓΓ−1 + x′

tBΓ−1 = ε′
tΓ−1

y′
t = −x′

tBΓ−1 + ε′
tΓ−1

y′
t = x′

tΠ + v′
t

which gives our reduced-form equations.

Finally, to take into account our T observations,

[
Y X E

]
=


y′

1 x′
1 ε′

1
y′

2 x′
2 ε′

2
...

...
...

y′
T x′

T ε′
T


which gives us

YΓ + XB = E

We will assume strict exogeneity, E [E|X] = 0. The reduced form is

Y = XΠ + V

3.2 Identification: The problem

We can easily and consistently estimate the parameters from the reduced-form equations (Π) via Π̂ =
(X′X)−1X′Y. However, we usually want to learn about the structural parameters—not the reduced-form
parameters. You might be tempted to think we can simply back out consistent estimates for the structural
parameters using out consistent estimates for the reduced-form parameters. But there’s a problem here: our
reduced-form equation does not guarantee a unique set of structural estimates. Observe:

1. Recall that Π = −BΓ−1.
2. Post-multiply our structural equation by some arbitrary nonsingular matrix F:

YΓF + XBF = EF
YΓ̃ + XB̃ = Ẽ

3. Solve for the reduced form of this alternate structural model:

YΓ̃Γ̃−1 + XB̃Γ̃−1 = ẼΓ̃−1

Y = −XBFF−1Γ−1 + EFF−1Γ−1

Y = −XBΓ−1 + EΓ−1

Y = XΠ + V

Thus, the two different sets of structural equations produce the same reduced form. This result is bad news if
you are trying to learn anything about the structural-form parameters. So what can we do? We need to make
some assumptions/exclusions that allow us to rule out any F except for the identity matrix.
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Another way to think about this problem: We know that we can consistently estimate the K ×M reduced-form
parameters and the M × M reduced-form covariance matrix, which means we “know” KM + 1

2(M + 1)M
parameters. We want to know the M × M parameters in Γ, the K × M parameters in B, and the M × M

parameters in Σ—meaning we do not know M2 +KM + 1
2

(M +1)M structural parameters. The difference

between the numbers of “known” and “unknown” parameters is M2—there are M2 more unknown parameters
than known parameters. Hence the need to make some assumptions.

3.3 Identification: The solution(s)

Max and Greene provide a list of five solutions to our identification problem.

1. Normalization
2. Identities
3. Exclusions
4. Linear restrictions
5. Restriction on the disturbance covariance matrix

We’ll focus on (1) and (2–4).

3.3.1 A single equation

Let’s focus on a single equation from our system, equation i:

YΓi + XBi = ei

or perhaps more clearly4

γ1iy1 + γ2iy2 + · · · + γMiyM + β1ix1 + β2ix2 · · · + βMKxK = εi

3.3.2 Normalization

The first restriction that we will make is the normalization restriction, which simply sets the coefficient on
one of our endogenous variables to 1.5 The norm6 is that the coefficient on the ith endogenous variable gets
normalized, though it really doesn’t matter which one you choose. Your structural model should actually
inform this choice (see Woolridge chapter 9 for a really nice write up here).

Let’s focus on the i = 1 equation and normalize γ11 = 1. Then structural equation i = 1 becomes

y1 + γ21y2 + · · · + γM1yM + β11x1 + β21x2 · · · + βMKxK = ε1

And we now only have a deficit of M(M − 1) unknown parameters (relative to the number of known param-
eters). How easy was that?

4I’ve omit the t subscripts below.
5Or −1 if you are following Woolridge. Doesn’t matter.
6Pun a little bit intended
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3.3.3 Restrictions

I’m going to lump together identities, exclusions, and linear restrictions. The gist of the game here is we have
too many parameters. Hopefully there are some reasonable restrictions to make—not all variables affect all
other variables (and thus can be excluded), some parameters are equal or linearly related, etc.

First, let’s define a matrix filled with all of our structural-form parameters:

∆ =
[

Γ
B

]

The ith column of ∆ gives the structural-form parameters in the ith equation, i.e.,

∆i =
[

Γi

Bi

]

Now define a matrix Ri that imposes all of the restrictions on equation i (excluding the normalization restric-
tion) such that

Ri∆i = 0

3.3.3.1 [ Example]Example7

For instance, if we have a system of equations

y1 = γ21y2 + γ31y3 + β11x1 + β31x3 + ε1

y2 = γ12y1 + β12x1 + ε2

y3 = β13x1 + β23x2 + β33x3 + β43x4 + ε3

The restrictions (ignoring the normalization) imposed in equation 1 are: β21 = 0 and β41 = 0. Therefore,

R1 =
[
0 0 0 0 1 0 0
0 0 0 0 0 0 1

]

To see this definition of R1, post-multiply it by ∆1:

R1∆1 =
[
0 0 0 0 1 0 0
0 0 0 0 0 0 1

]


−1
γ21
γ31
β11
β21
β31
β41


=

[
β21
β41

]
=

[
0
0

]

which replicates our restrictions.

7Based upon Woolridge, Example 9.3.
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3.3.4 Order condition

The order condition gives us a necessary (but not sufficient) condition for whether the ith structural equation
is identified. The order condition says that a necessary condition for the ith equation to be identified is Ji ≥
M − 1, where Ji is the row dimension of Ri.

The order condition is a fairly quick and easy way to check whether an equation is identified. Just keep in
mind that the order condition is necessary but not sufficient.

Greene formally defines the order condition slightly differently:8 “The number of exogenous variables excluded
from equation j must be at least as large as the number of endogenous variables included in equation j.”

3.3.5 Rank condition

The rank condition provides a necessary and sufficient condition for the ith equation to be identified. The rank
condition is:

rank
(
Ri∆

)
= M − 1

3.3.6 Name calling

Our order condition allows for three possibilities:

1. Ji < M − 1: Equation i is under identified.
2. Ji = M − 1 and rank

(
R1∆

)
= M − 1: Equation i is exactly identified.

3. Ji > M − 1 and rank
(
R1∆

)
= M − 1: Equation i is over identified.

3.3.6.1 Example, continued

Returning to our example of three endogenous variables, three equations, and four exogenous variables

y1 = γ21y2 + γ31y3 + β11x1 + β31x3 + ε1

y2 = γ12y1 + β12x1 + ε2

y3 = β13x1 + β23x2 + β33x3 + β43x4 + ε3

and

R1 =
[
0 0 0 0 1 0 0
0 0 0 0 0 0 1

]

We can check the order condition for the first equation: J1 = 2 (the number of rows in R1), and M − 1 =
3 − 1 = 2, so J1 = M − 1. We exatly satisfy the order condition. However, we still need to check the rank
condition.

8Definition 15.1 for me
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R1∆ =
[
0 0 0 0 1 0 0
0 0 0 0 0 0 1

]


−1 γ12 γ13
γ21 −1 γ23
γ31 γ32 −1
β11 β12 β13
β21 β22 β23
β31 β32 β33
β41 β42 β43


=

[
β21 β22 β23
β41 β42 β43

]

Nowwe impose any restrictions found in the structural equations. The first column is all zeros because β21 = 0
and β41 = 0 by assumption. Notice that the second structural equation also sets β22 = 0 and β42 = 0. Finally,
the third structural equation does not have any restrictions that affect R1∆. Imposing these restrictions, we
now have

R1∆ =
[
0 0 β23
0 0 β43

]
which has at most rank 1 (if either β23 or β43 are not equal to zero). Because M − 1 = 3 − 1 = 2, equation
1 fails the rank condition and is therefore not identified in this system of equations.

3.4 Checking identification

Woolridge9 provides a nice four-step process for checking whether the ith equation in the system is identified:

1. Set one of the parameters for the endogenous variables (i.e., one of the γmi) to one (normalization).
2. Define the Ji × (M + K) matrix Ri that imposes all of the restrictions for equation i.
3. If Ji < M − 1, then equation i is not identified (under identified).
4. If Ji ≥ M − 1, then equation i might be identified.

• Let ∆ be the matrix of all structural parameters with only the normalization restrictions applied.
• Compute Ri∆.
• Impose the restrictions in the entire system.
• Check the rank condition, i.e., rank

(
Ri∆

)
= M − 1.

4 Simultaneous simulation

Let’s bake some data so we can apply our newly learned theory.

First, it will be helpful (necessary) to have an actual set of equations. So here is one.

y1 = γ21y2 + β21x2 + β31x3 + ε1

y2 = γ32y3 + β12x1 + β22x2 + ε2

y3 = γ13y1 + β13x1 + ε3

I’ll let you check the rank conditions for each of the equations. They should pass.

Let’s write out the structural and reduced forms in matrix form.
9Page 219 in my copy.
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[
y1 y2 y3

] −1 0 γ13
γ21 −1 0
0 γ32 −1

 +
[
x1 x2 x3

]  0 β12 β13
β21 β22 0
β31 0 0

 = −
[
ε1 ε2 ε3

]

Which implies the reduced form

[
y1 y2 y3

]
=

[
x1 x2 x3

]  0 β12 β13
β21 β22 0
β31 0 0


−1 0 γ13

γ21 −1 0
0 γ32 −1


−1

−
[
ε1 ε2 ε3

] −1 0 γ13
γ21 −1 0
0 γ32 −1


−1

4.1 Parameterization

We can use this reduced form to generate data, but first we need to define some parameters.

y1 = 2y2 + 3x2 + 5x3 + ε1

y2 = 3y3 + 1x1 + 4x2 + ε2

y3 = 1y1 + 2x1 + ε3

Thus, the parameters in Γ are:

Γ =

−1 0 γ13
γ21 −1 0
0 γ32 −1

 =

−1 0 1
2 −1 0
0 3 −1


And the parameters in B are:

B =

 0 β12 β13
β21 β22 0
β31 0 0

 =

0 1 2
3 4 0
5 0 0


Now let’s set it all up in R.

First the general setup.

# General R setup ----
# Options
options(stringsAsFactors = F)

# Load new packages
library(pacman)
p_load(ggmap, leaflet)

# Load old packages
p_load(dplyr, ggplot2, ggthemes, parallel, magrittr, viridis)

# My ggplot2 theme
theme_ed <- theme(
legend.position = "bottom",

panel.background = element_rect(fill = NA),

# panel.border = element_rect(fill = NA, color = "grey75"),
axis.ticks = element_line(color = "grey95", size = 0.3),

panel.grid.major = element_line(color = "grey95", size = 0.3),
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panel.grid.minor = element_line(color = "grey95", size = 0.3),

legend.key = element_blank())
# My directories
dir_14 <- "/Users/edwardarubin/Dropbox/Teaching/ARE212/Section14/"

Now the structural parameters.

# Define the structural parameters ----
# Gamma
Gamma <- matrix(
data = c(-1, 0, 1, 2, -1, 0, 0, 3, -1),

nrow = 3,

byrow = T

)

# Beta
Beta <- matrix(
data = c(0, 1, 2, 3, 4, 0, 5, 0, 0),

nrow = 3,

byrow = T

)

4.2 Generate data

Now let’s generate the three xk variables and the disturbances εm from standard random normal distributions.
We want 10,000 observations.

# Generate data ----
# Set the sample size
N <- 1e3

# Set a seed
set.seed(12345)
# Generate the data for X and E
x_df <- data_frame(
x1 = rnorm(N),
x2 = rnorm(N),
x3 = rnorm(N)

)

e_df <- data_frame(
e1 = rnorm(N),
e2 = rnorm(N),
e3 = rnorm(N)

)

Now we will use the reduced form to generate our [y1, y2, y3] variables.

# Generate the y variables
y_mat <- (-1) * as.matrix(x_df) %*% Beta %*% solve(Gamma) -

as.matrix(e_df) %*% solve(Gamma)
# Force to data frame
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y_df <- y_mat %>% as_data_frame()
names(y_df) <- c("y1", "y2", "y3")

# Join the data together
the_df <- bind_cols(y_df, x_df)

4.3 Estimation

Let’s estimate the parameters in the first equation. Keep in mind that truth in this simulation is γ21 = 2,
β21 = 3, and β31 = 5.

4.3.1 OLS

First, let’s try plain OLS to estimate the parameters in the first equation. OLS here is exactly what we’ve been
doing throughout this whole course: for equation i, regress the left-hand side variable (yi) on the right-hand
side variables (Zi, which includes endogenous and exogenous variables on the RHS).

di,OLS =
(
Z′

iZi
)−1 Z′

iy′
i

OLS for equation 1:

# The LHS variable in eq. 1
yi <- y_mat[,1]

# The RHS variables in eq. 1
Zi <- bind_cols(y_df[,2], x_df[,2:3]) %>% as.matrix()
# OLS estimates
solve(t(Zi) %*% Zi) %*% t(Zi) %*% yi

## [,1]

## y2 1.802818

## x2 2.479916

## x3 4.388147

OLS is inconsistent here. Unsurprisingly, our estimates are not right on their parameters.

4.3.2 2SLS

One of the classic solutions to simultaneity bias—particularly when you only care about estimating the param-
eters in a single equation—is two-stage least squares (2SLS). In this application of two-stage least squares, we
are going to instrument (project) the endogenous RHS variables of equation i with all of the exogenous vari-
ables in the system. To make calculation a bit easier, we will actually instrument all RHS variables in equation
i (call this matrix Zi) with all of the exogenous variables in the system (call this matrix X). Call the predictions
(a.k.a fitted values) from this first stage Ẑi. We then regress our LHS dependent variable in equation i (call
this vector yi) on Ẑi. In math:

Predictions from the first stage: Ẑi = X
(
X′X

)−1 X′Zi

Second-stage estimates for ∆i: di,2SLS =
(
Ẑ′

iẐi

)−1
Ẑ′

iyi
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# Matrix of all exogenous variables in the system
X <- x_df %>% as.matrix()
# First-stage fitted values
Zi_hat <- X %*% solve(t(X) %*% X) %*% t(X) %*% Zi

# 2SLS estimates
solve(t(Zi_hat) %*% Zi_hat) %*% t(Zi_hat) %*% yi

## [,1]

## y2 2.017908

## x2 3.049772

## x3 5.022968

Much better!

4.4 Simulation

We’ve observed that in a single sample 2SLS gets us much closer to the true parameter estimates than OLS.
Let’s use a simulation to confirm that this empirical observation (and the underlying theory) repeat through
many samples.10

For this simulation, we want to

1. Generate a population of size N
2. Sample from the population with sample size n
3. Estimate OLS and 2SLS on the sample
4. Repeat 10,000 times

First, let’s generate the population. I think a 100,000 members will suffice. We can simply steal code from
above.

# Simulation ----
# Clean up from the other 'simulation'
rm(N, x_df, e_df, y_mat, y_df, the_df, yi, Zi, X, Zi_hat); gc()

## used (Mb) gc trigger (Mb) max used (Mb)

## Ncells 745501 39.9 1168576 62.5 1168576 62.5

## Vcells 1199372 9.2 2935569 22.4 2352988 18.0

# Generate population data:
# Set the population size
N <- 1e5

# Set a seed
set.seed(12345)
# Generate the data for X and E
pop_x <- data_frame(
x1 = rnorm(N),
x2 = rnorm(N),
x3 = rnorm(N)

)

10Note: This kind of simulation (for a fixed sample size) is really getting at bias—rather than consistency.
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pop_e <- data_frame(
e1 = rnorm(N),
e2 = rnorm(N),
e3 = rnorm(N)

)

# Generate the y variables
pop_y <- (-1) * as.matrix(pop_x) %*% Beta %*% solve(Gamma) -

as.matrix(pop_e) %*% solve(Gamma)
# Force to data frame
y_df <- pop_y %>% as_data_frame()
names(y_df) <- c("y1", "y2", "y3")

# Join the data together
pop_df <- bind_cols(y_df, pop_x)

# Clean up
rm(pop_x, pop_e, pop_y, y_df); gc()

## used (Mb) gc trigger (Mb) max used (Mb)

## Ncells 745629 39.9 1168576 62.5 1168576 62.5

## Vcells 1799497 13.8 2935569 22.4 2910530 22.3

Now we will write a function that carries out tasks (2) and (3).

# Function: Run a single iteration of the simulation
fun_iter <- function(i, data, sample_size) {

# Sample from the population
smpl_df <- sample_n(tbl = data, size = sample_size)

# The LHS variable in eq.1
yi <- smpl_df %>% select(y1) %>% as.matrix()
# The RHS variables in eq. 1
Zi <- smpl_df %>% select(y2, x2, x3) %>% as.matrix()
# OLS estimates
d_ols <- solve(t(Zi) %*% Zi) %*% t(Zi) %*% yi

# Matrix of all exogenous variables in the system
X <- smpl_df %>% select(starts_with("x")) %>% as.matrix()
# First-stage fitted values
Zi_hat <- X %*% solve(t(X) %*% X) %*% t(X) %*% Zi

# 2SLS estimates
d_2sls <- solve(t(Zi_hat) %*% Zi_hat) %*% t(Zi_hat) %*% yi

# Create results data frame
result_df <- rbind(t(d_ols), t(d_2sls)) %>% as_data_frame()
# Add method and iteration variables
result_df %<>% mutate(

method = c("OLS", "2SLS"),

iter = i

)

# Return the results
return(result_df)

}

Now for the simulation! We will run 10,000 iterations with sample size 1,000. It takes about a minute to run
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on my machine using three cores (I’m using proc.time() to track the start and end times of the simulation.
Taking the difference gives us the elapsed time during the simulation.).

t1 <- proc.time()
# Run fun_iter() 10,000 times
sim_df <- mclapply(
X = 1:1e4,

FUN = fun_iter,

mc.cores = 3,

data = pop_df,

sample_size = 1e3

) %>% bind_rows()
t2 <- proc.time()
t2 - t1

## user system elapsed

## 117.216 7.372 73.750

Finally, let’s plot our results. First, γ21—the coefficient on y2 in the first equation—which we know is actually
equal to 2.

ggplot(data = sim_df, aes(x = y2, fill = method)) +

geom_density(color = NA, alpha = 0.9) +

geom_vline(xintercept = Gamma[2,1], color = viridis(3, option = "C")[2]) +

geom_hline(yintercept = 0, color = "black") +

labs(
x = expression(Parameter~estimates:~gamma[21]),
y = "Density"

) +

ggtitle(
expression(paste("Simultaneity bias: Comparing OLS and 2SLS in estimating equation 1 parameter ",

gamma[21])),

subtitle = "10,000 iterations with sample size 1,000"

) +

scale_fill_viridis(
"Estimation method:",

discrete = T, option = "C", begin = 0.15, end = 0.85

) +

theme_ed
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Repeat for β21 (= 3) and β31 (= 5).

ggplot(data = sim_df, aes(x = x2, fill = method)) +

geom_density(color = NA, alpha = 0.9) +

geom_vline(xintercept = Beta[2,1], color = viridis(3, option = "C")[2]) +

geom_hline(yintercept = 0, color = "black") +

labs(
x = expression(Parameter~estimates:~beta[21]),
y = "Density"

) +

ggtitle(
expression(paste("Simultaneity bias: Comparing OLS and 2SLS in estimating equation 1 parameter ",

beta[21])),

subtitle = "10,000 iterations with sample size 1,000"

) +

scale_fill_viridis(
"Estimation method:",

discrete = T, option = "C", begin = 0.15, end = 0.85

) +

theme_ed
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ggplot(data = sim_df, aes(x = x3, fill = method)) +

geom_density(color = NA, alpha = 0.9) +

geom_vline(xintercept = Beta[3,1], color = viridis(3, option = "C")[2]) +

geom_hline(yintercept = 0, color = "black") +

labs(
x = expression(Parameter~estimates:~beta[31]),
y = "Density"

) +

ggtitle(
expression(paste("Simultaneity bias: Comparing OLS and 2SLS in estimating equation 1 parameter ",

beta[31])),

subtitle = "10,000 iterations with sample size 1,000"

) +

scale_fill_viridis(
"Estimation method:",

discrete = T, option = "C", begin = 0.15, end = 0.85

) +

theme_ed
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Just as we suspected: 2SLS is providing consistent11 estimates of the structural parameters, while OLS is
inconsistent in each application.

11Again, this simulation is more about unbiased-ness.
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