
Section 9: Standard errors, Vol. I
Ed Rubin

Contents

1 Admin 1
1.1 Midterm . 1
1.2 Problem sets . 1
1.3 Office hours next week . 1
1.4 Last week . 2
1.5 This week . 2
1.6 What you will need . 2

2 Standard errors 2
2.1 Setup . 2
2.2 Tables . 4
2.3 Linear combinations . 6
2.4 Route 1: Analytical variance . 7
2.5 Route 2: Delta Method . 9
2.6 Nonlinear combinations . 11

3 Fun tools: Mendeley 15

4 More 16

1 Admin

1.1 Midterm

Congrats on finishing your (ARE 212) midterms!

1.2 Problem sets

Now back to work. Problem set 2 is due Wednesday the 21st. Problem set 3 is due approximately April 6th.

Again, please try to submit in a way where your answers are outside of and clearly distinguishable from your R
code. And please include the R code for each problem along with the problem (unless it draws upon something
you already calculated—no need to copy the same code 100 times).

1.3 Office hours next week

I may have to report for jury duty on Monday, so we may have to move office hours.

1

1.4 Last week

Last week we discussed the asymptotic properties of the OLS estimator under a more general set of assumptions.

1.5 This week

Standard errors. Specifically standard errors of linear and nonlinear combinations of OLS-estimated parame-
ters, which will bring us to the Delta Method. Finally: making (pretty) tables.

1.6 What you will need

Packages:

• New! (You probably need to install these packages):
– gmodels for its function estimable()

– msm for its Delta Method function deltamethod()

• Previously used: dplyr, readr, magrittr, lfe, ggplot2, ggthemes

Data: The auto.csv file (again).

2 Standard errors

As we discussed previously, inference is tremendously important in econometrics. And at the heart of inference
is the issue of calculating standard errors. Why? If we want to test the significance of our estimates—or if we
want to construct a confidence interval for our estimates or predictions—then we need to calculate (estimate)
the variance around our point estimates. And what is the standard deviation of an estimator? Its standard
error.

2.1 Setup

Let’s set up R and load our functions and data.

2.1.1 Setup and data

Setup ----
Options
options(stringsAsFactors = F)

options(scipen = 10)

Packages
library(pacman)
p_load(readr, lfe, dplyr, magrittr, parallel, ggplot2, viridis, gmodels, msm)

Directory
dir_section <- "/Users/edwardarubin/Dropbox/Teaching/ARE212/Section09/"

My ggplot2 theme
theme_ed <- theme(

2

section08.html
Section09/auto.csv
section05.html

legend.position = "bottom",

panel.background = element_rect(fill = NA),

panel.border = element_rect(fill = NA, color = "grey75"),

axis.ticks = element_line(color = "grey85"),

panel.grid.major = element_line(color = "grey95", size = 0.2),

panel.grid.minor = element_line(color = "grey95", size = 0.2),

legend.key = element_blank())

Load data ----
cars <- read_csv(paste0(dir_section, "auto.csv"))

2.1.2 Functions

Functions ----
Function to convert tibble, data.frame, or tbl_df to matrix
to_matrix <- function(the_df, vars) {

Create a matrix from variables in var
new_mat <- the_df %>%

Select the columns given in 'vars'
select_(.dots = vars) %>%

Convert to matrix
as.matrix()

Return 'new_mat'
return(new_mat)

}

Function for OLS coefficient estimates
b_ols <- function(y, X) {

Calculate beta hat
beta_hat <- solve(t(X) %*% X) %*% t(X) %*% y

Return beta_hat
return(beta_hat)

}

Function for OLS coef., SE, t-stat, and p-value
ols <- function(data, y_var, X_vars) {

Turn data into matrices
y <- to_matrix(data, y_var)

X <- to_matrix(data, X_vars)

Add intercept
X <- cbind(1, X)

Calculate n and k for degrees of freedom
n <- nrow(X)
k <- ncol(X)
Estimate coefficients
b <- b_ols(y, X)

Update names
rownames(b)[1] <- "Intercept"

Calculate OLS residuals

3

e <- y - X %*% b

Calculate s^2
s2 <- (t(e) %*% e) / (n-k)

Convert s2 to numeric
s2 %<>% as.numeric()
Inverse of X'X
XX_inv <- solve(t(X) %*% X)

Standard error
se <- sqrt(s2 * diag(XX_inv))
Vector of _t_ statistics
t_stats <- (b - 0) / se

Calculate the p-values
p_values = pt(q = abs(t_stats), df = n-k, lower.tail = F) * 2

Nice table (data.frame) of results
results <- data.frame(

The rows have the coef. names
effect = rownames(b),
Estimated coefficients
coef = as.vector(b),
Standard errors
std_error = as.vector(se),
t statistics
t_stat = as.vector(t_stats),
p-values
p_value = as.vector(p_values)
)

Return the results
return(results)

}

2.2 Tables

Suppose we want to estimate the following model.

Pricei = β0 + β1MPGi + β2Weighti + εi

We know how to calculate the coefficients, the standard errors, the t statistics, and the p-values, e.g.,

Regress price on MPG and weight
ols(cars, "price", c("mpg", "weight"))

effect coef std_error t_stat p_value

1 Intercept 1946.068668 3597.0495988 0.5410180 0.590188628

2 mpg -49.512221 86.1560389 -0.5746808 0.567323727

3 weight 1.746559 0.6413538 2.7232382 0.008129813

Can we make the results a bit prettier? Let’s grab the results and feed them to the kable() function from the
knitr package.

4

Regress price on MPG and weight
ols(cars, "price", c("mpg", "weight")) %>%

knitr::kable()

effect coef std_error t_stat p_value

Intercept 1946.068668 3597.0495988 0.5410180 0.5901886
mpg -49.512221 86.1560389 -0.5746808 0.5673237
weight 1.746559 0.6413538 2.7232382 0.0081298

Not bad, but we can do more.

Regress price on MPG and weight
tmp_results <- ols(cars, "price", c("mpg", "weight"))[,2:5]

row.names(tmp_results) <- c("Intercept", "MPG", "Weight")

knitr::kable(tmp_results,
digits = c(2, 2, 2, 3),

col.names = c("$\\widehat{\\boldsymbol{\\beta}}$", "S.E.",

"___t___ stat", "___p___-Value"),

row.names = T,

caption = "Regressing price on mileage and weight"

)

Table 2: Regressing price on mileage and weight

β̂ S.E. t stat p-Value

Intercept 1946.07 3597.05 0.54 0.590
MPG -49.51 86.16 -0.57 0.567
Weight 1.75 0.64 2.72 0.008

Because I write the section notes in Rmarkdown, I am making use of Markdown formatting within the column
names (e.g., ___t___ creates a bolded, italicized t, i.e., t). If you want LaTeX formatting, then you can set the
format option to "latex", to generate the LaTeX code for a table. You will also want to set escape = F if you
want knitr to print the table as a table with LaTeX math expressions inside. I’m also using the booktabs =

T argument, which creates prettier tables in LaTeX but also requires adding \usepackage{booktabs} to your
preamble.

Regress price on MPG and weight
tmp_results <- ols(cars, "price", c("mpg", "weight"))[,2:5]

row.names(tmp_results) <- c("Intercept", "MPG", "Weight")

knitr::kable(tmp_results,
format = "latex",

digits = c(2, 2, 2, 3),

col.names = c("$\\widehat{\\boldsymbol{\\beta}}$", "S.E.",

"t stat", "p-Value"),

escape = F,

row.names = T,

5

caption = "Regressing price on mileage and weight",

booktabs = T

) %>% print()

\begin{table}

##

\caption{\label{tab:unnamed-chunk-6}Regressing price on mileage and weight}

\centering

\begin{tabular}[t]{lrrrr}

\toprule

& $\widehat{\boldsymbol{\beta}}$ & S.E. & t stat & p-Value\\

\midrule

Intercept & 1946.07 & 3597.05 & 0.54 & 0.590\\

MPG & -49.51 & 86.16 & -0.57 & 0.567\\

Weight & 1.75 & 0.64 & 2.72 & 0.008\\

\bottomrule

\end{tabular}

\end{table}

I’m using the print() function above to tell my Rmarkdown compiler to print to code for the table—as opposed
to attempting to create the table (so you can see the code). You don’t need the print().

This is about as far as knitr and kable() can take us in table creation. For more features, I suggest the
packages stargazer and/or xtable. kableExtra also works nicely.

Maybe more in a future section…

2.3 Linear combinations

Okay, so we know how to calculate the standard error for out point estimates of the coefficients (under some
pretty restrictive assumptions). What if we would like to know the average “effect” on price for 20 MPG
and 3,000 pounds?1 Let us call this “mean effect” LC (for linear combination). Thus, we are interested in
LC = 20β1 + 3000β2. We will estimate LC via

L̂C = 20 × b1 + 3000 × b2

Regress price on mpg and weight
reg1 <- ols(cars, "price", c("mpg", "weight"))

lc = 20 * b1 + 3000 * b2
(lc <- 20 * reg1[2,2] + 3000 * reg1[3,2])

[1] 4249.433

Aside: Wrapping the definition of an object in parentheses forces R to print the object’s value.

We have a point estimate. We’re done, right? Noooooo! Point estimates without standard errors should make
you a bit suspicious. How precisely estimated is the point estimate? Is there any evidence it is significantly
different from zero?

1The reason for the quotation marks around effect is that we are not estimating causal effects in this regression. However, because
this class (and section) is not about causal inference, we will for the moment pretend the effects are causal.

6

https://haozhu233.github.io/kableExtra/awesome_table_in_html.html

So how can we get a standard error for this point estimate? There are two common routes—an analytical route
and the Delta-Method route.

2.4 Route 1: Analytical variance

Let’s revisit the definition of a standard error. When defined the standard error of b, as

se(b) =
√

Var (b)

More generally, the standard error of an arbitrary estimator θ is simply

se(θ) =
√

Var (θ)

Thus, if we want the standard error of L̂C, we really need know the variance of L̂C. So what is the variance
of L̂C?

Var
(
L̂C

)
= Var (20b1 + 3000b2)

Now let’s think way back to elementary statistics. There are a few relationships that will be useful here:

Var (aX) = a2 Var (X)

Var (X + Y) = Var (X) + Var (Y) + 2Cov (X, Y)

Cov (aX, bY) = abCov (X, Y)

which leaves us with

Var (aX + bY) = a2 Var (X) + b2 Var (Y) + 2abCov (X, Y)

Now we can apply this knowledge to Var
(
L̂C

)
:

Var
(
L̂C

)
= 202 Var (b1) + 30002 Var (b2) + 2 × 20 × 3000Cov (b1, b2)

Lucky for us, we’ve already calculated estimates for Var (b1), Var (b2), and Cov (b1, b2): they are (some of)
the elements of s2 (X′X)−1. (Specifically, they are the elements of the variance-covariance matrix once we
remove the first row and column.)

Let’s write a quick function that returns the variance-covariance matrix of b:

7

Variance-covariance function for OLS beta hat
vcov_ols <- function(data, y_var, X_vars) {

Turn data into matrices
y <- to_matrix(data, y_var)

X <- to_matrix(data, X_vars)

Add intercept
X <- cbind(1, X)

Label intercept
colnames(X)[1] <- "intercept"

Calculate n and k for degrees of freedom
n <- nrow(X)
k <- ncol(X)
Estimate coefficients
b <- b_ols(y, X)

Calculate residuals
e <- y - X %*% b

Calculate s2 and convert to scalar
s2 <- (t(e) %*% e / (n - k)) %>% as.vector()
Convert s2 to numeric
s2 %<>% as.numeric()
Calculate the variance-covariance matrix
vcov_mat <- s2 * solve(t(X) %*% X)

Return the variance-covariance matrix
return(vcov_mat)

}

First, let’s make sure our function works.

Run the vcov_ols() function
vcov_ols(cars, "price", c("mpg", "weight"))

intercept mpg weight

intercept 12938765.816 -292759.82264 -2191.9031965

mpg -292759.823 7422.86303 44.6016592

weight -2191.903 44.60166 0.4113347

This matrix contains our estimates for

Var (b) =

 Var (b0) Cov (b0, b1) Cov (b0, b2)
Cov (b0, b1) Var (b1) Cov (b1, b2)
Cov (b0, b2) Cov (b1, b2) Var (b2)

Looks great. Now let’s calculate the (analytical) standard error for L̂C.

Regress price on mpg and weight
reg1 <- ols(cars, "price", c("mpg", "weight"))

lc = 20 * b1 + 3000 * b2
(lc <- 20 * reg1[2,2] + 3000 * reg1[3,2])

[1] 4249.433

8

The variance-covariance matrix
vcov1 <- vcov_ols(cars, "price", c("mpg", "weight"))

The standard error for 'lc'
(lc_se <- sqrt(20^2 * vcov1[2,2] + 3000^2 * vcov1[3,3] +

2 * 20 * 3000 * vcov1[2,3]))

[1] 3467.471

Let’s check our work using the canned lm() function in conjunction with the estimable() function2 from
the gmodels package that we previously loaded.3 The estimable() function estimates the point estimate
and the standard error for a linear combination of coefficients from an estimated model object obj. We pass
estimable() the linear combination via its argument cm. In our case, cm = c(0, 20, 3000), meaning we do
not want the intercept, we want to multiply b1 coefficient by 20, and we want to multiply the third coefficient
b2 by 3,000.

Estimate the model with 'lm'
lm_est <- lm(price ~ mpg + weight, data = cars)

Estimate the linear combination
estimable(obj = lm_est, cm = c(0, 20, 3000))

Estimate Std. Error t value DF Pr(>|t|)

(0 20 3000) 4249.433 3467.471 1.225514 71 0.2244315

Alternative test (no standard errors, though)
waldtest(lm_est, ~ 20 * mpg + 3000 * weight)

p chi2 df1 p.F F df2

0.2203818 1.5018836 1.0000000 0.2244315 1.5018836 71.0000000

attr(,"formula")

~20 * mpg + 3000 * weight

<environment: 0x111fe72e8>

I’ve also added lfe’s waldtest() function. It gives a point estimate and tests against zero but does not provide
a standard error.

How could we build our own t statistic?

Our t statistic
lc / lc_se

[1] 1.225514

Quick summary: our point estimate, while seemingly large, is not significantly different from zero.

2.5 Route 2: Delta Method

There are times where you either cannot (or do not want to) solve analytically for the variance of your estimator.
Enter: the Delta Method.

2Equivalent of Stata’s lincom.
3While estimable() works with many classes of objects—lm, glm, lme, geese—it does not work with felm class objects. Thus we

are working with lm() today. You can use your knowledge of the Frisch-Waugh-Lovell theorem to take care of your fixed effects and
then use lm() for the final regression if you want to use estimable()… or you can just do the test yourself, since felm() gives you
coefficient estimates and a variance-covariance matrix.

9

The Delta Method can look a bit intimidating, but if you stick with me through the math, you will find it actually
is not too bad.

Take an arbitrary function a(·) : RK → Rr (whose first derivatives exist and are continuous). (This a(·) is
generally going to be some sort of function of our coefficients.)

Now define A(β) as the r × k matrix of first derivatives, evaluated at β,

A (β) = ∂ a (β)
∂β′

Now take a sequence of k-dimensional random vectors {xN : N = 1, 2, . . .}, where

xN
p→ β

and

√
N (xN − β) d−→ N (0, Σ)

This “sequence” will generally be our (OLS) estimator (it converges to β and is asymptotically normal).

If we satisfy these conditions, then

√
N

(
a (xN) − a(β)

) d−→ N
(
0, A(β)Σ A(β)′)

So what does all of this math (the Delta Method) mean?

Imagine we want to estimate some function of unknown parameters a(β). The Delta Method tells us that if
we have some estimator (sequence) xN that is (1) consistent for β and (2) asymptotically normal—and if the
first derivatives of a(·) exist and are continuous at β—then

1. a (xN) is consistent for a (β), i.e., we can plug our estimates for β into a(·) to estimate a (xN)
2. The variance-covariance matrix of this new estimator a (xN) is A(β)Σ A(β)′. In practice, we need to

take derivatives of a(·) with respect to β and then plug in estimates.

Let’s see what the Delta Method looks like in an actual application.

Recall our function of unknown parameters

a(β) = LC = 20β1 + 3000β2

and its estimator

a(xN) = a(bOLS) = L̂C = 20 × b1 + 3000 × b2

Do we satisfy the requirements of the Delta Method?

1. We know bOLS is consistent for β

2. We also know
√

N (bOLS − β) d−→ N
(
0, σ2 (X′X)−1

)
10

3. The continuous-derivatives condition is satisfied, as

A (β) = ∂ a (β)
∂β′ = ∂(20β1 + 3000β2)

∂[β0, β1, β2]
=

[
0 20 3000

]
Let’s name this derivative matrix LCβ .

Because we satisfy these conditions, we can apply the Delta Method, i.e.,

√
N

(
L̂C − LC

) d−→ N
(
0, LCβ · σ2 (

X′X
)−1 · LC′

β

)
Alright! We made it. Now let’s put this last statement in code (estimating σ2 with s2).

Remind ourselves of LC and its var-cov matrix
lc <- 20 * reg1[2,2] + 3000 * reg1[3,2]

vcov1 <- vcov_ols(cars, "price", c("mpg", "weight"))

Define our derivative matrix
deriv_mat <- matrix(c(0, 20, 3000), nrow = 1)

Calculate the standard error of 'lc' via delta method
lc_dm <- sqrt(deriv_mat %*% vcov1 %*% t(deriv_mat))

Finally, let’s compare the two sets of standard errors—analytical and Delta Method

Analytical s.e.
lc_se

[1] 3467.471

Delta Method s.e.
lc_dm

[,1]

[1,] 3467.471

They’re the same?!?!4 Before you decide that at least one of the last two sections/methods was pointless,
you should know that the previous example with LC was a special case: we had a linear combination of the
coefficients. When you have a linear combination of coefficients, the standard errors calculated by the two
different methods will match. When you deviate from linear combinations of the coefficients, the methods will
provide different estimates (assuming you can derive the analytical variance at all).

Let’s see an example.

2.6 Nonlinear combinations

Suppose we have the data-generating process

yi = β0 + β1xi + β2x2
i + εi

4I debated here whether the question mark should preced the exclamation mark.

11

OLS can handle estimating this quadratic function just fine. However, what if we want to know which value
of x maximizes y? Assuming β2 > 0, this function reaches its maximum at

xM = − β1
2β2

This relationship between β1 and β2 is clearly not linear in the coefficients. Thus, while we can easily estimate
xM via

x̂M = − b1
2b2

we would have a very difficult time deriving the analytical variance of this estimator. However, the Delta
Method provides us with a much nicer alternative.

A bit more formally, in this example,

a(β) = xM = − β1
2β2

which means

A(β) = ∂xM

∂β′ =
[

∂xM

∂β0

∂xM

∂β1

∂xM

∂β2

]
=

[
0 − 1

2β2

β1
2β2

2

]
Let’s bake some fake data and estimate this model. We will generate x from a uniform distribution between
-2 and 3; we will generate our disturbances from a normal distribution with mean zero and variance 10. We
will define y = 4 + 4xi − 2x2

i + εi.

Set the seed
set.seed(12345)
Set the size
n <- 50

Generate data
fake_df <- data.frame(
x = runif(n = n, min = -2, max = 3),

e = rnorm(n = n, mean = 0, sd = sqrt(10))
) %>% tbl_df()

Calculate y = 4 + 4x - 2x^2 + e
fake_df %<>% mutate(
x2 = x^2,

y = 4 + 4 * x - 2 * x^2 + e)

Now we calculate bOLS and the variance-covariance matrix of the OLS estimator

Estimate coefficients
(b_fake <- ols(fake_df, "y", c("x", "x2")) %$% coef)

[1] 4.403845 3.975403 -1.792509

12

Estimate var-cov matrix
v_fake <- vcov_ols(fake_df, "y", c("x", "x2"))

Next, we substitute our estimates for β1 and β2 into A(β) (the first-derivates matrix).

Create the A matrix
A_fake <- matrix(data = c(
The first entry of A()
0,

The second entry of A()
-1/(2 * b_fake[3]),

The third entry of A()
b_fake[2]/(2 * b_fake[3]^2)),

nrow = 1)

Finally, we calculate x̂M = a(bOLS) and approximate5 its standard error, using the Delta Method as we derived
above

Our estimate for the x that maximizes y
(x_m <- - b_fake[2] / (2 * b_fake[3]))

[1] 1.108893

Our estimate for the standard error
(se_m <- sqrt(A_fake %*% v_fake %*% t(A_fake)))

[,1]

[1,] 0.1488887

Let’s confirm our results using some canned functions. We can estimate the coefficients with felm() and then
calculate the Delta-Method based standard errors using the deltamethod() function from the msm package.
The deltamethod() function wants three things:

1. g, a formula that relates the coefficients/parameters in terms of x1, x2, …, e.g., we have have three
parameters β0, β1 β2 which we want to relate via −β1/(2β2), so our formula is ~ - x2 / (2 * x3).
Apologies for the subscripts being off by a number.

2. mean, our estimates for the parameters
3. cov, the variance-covariance matrix of the parameters

Estimate the equation
felm_fake <- felm(y ~ x + x2, data = fake_df)

Use the 'deltamethod' function
deltamethod(g = ~ - x2 / (2 * x3),

mean = coef(felm_fake),
cov = vcov(felm_fake))

[1] 0.1488887

Print the value we calculated above
se_m

[,1]

[1,] 0.1488887

5The Delta Method provides a first-order approximation.

13

We’re good.

To get a better picture of what we’ve just done, let’s plot a few things:

• our data
• the expected value of the true data-generating process, y = 4 + 4xi − 2x2

i

• the predicted function, f̂(x) = β̂0 + β̂1x + β̂2x2

• the true maximum (xM = 1)
• the predicted maximum with its 95% confidence interval

Force se_m to numeric
se_m <- as.numeric(se_m)
Our plot
ggplot() +

95% confidence interval for maximal x
geom_rect(aes(ymin = -Inf, ymax = Inf,

xmin = x_m - 1.96 * se_m, xmax = x_m + 1.96 * se_m),

fill = "grey90", alpha = 0.5) +

Plot the points
geom_point(data = fake_df, aes(x = x, y = y)) +

Plot the true function
stat_function(data = data.frame(x = c(-Inf, Inf)), aes(x = x),

fun = function(x) {

4 + 4 * x - 2 * x^2

}, color = "blue", alpha = 0.25) +

Plot the predicted function
stat_function(data = data.frame(x = c(-Inf, Inf)), aes(x = x),

fun = function(x) {

b_fake[1] + b_fake[2] * x + b_fake[3] * x^2

}, color = "grey65", linetype = 2, alpha = 0.25) +

Vertical line at the predicted max.
geom_vline(xintercept = x_m, color = "grey65", linetype = 2) +

Vertical line at the true max.
geom_vline(xintercept = 1, color = "blue") +

Title
ggtitle("Estimating the maximum of a quadratic") +

Theme
theme_ed

14

−10

−5

0

5

10

−2 −1 0 1 2 3

x

y
Estimating the maximum of a quadratic

In this figure, the solid grey line is predicted function; the solid blue vertical line shows the x that sits at the
true maximum; the dotted grey line gives the estimated x that maximizes y; and the shaded grey region gives
the 95% confidence interval for this x that maximizes y.

3 Fun tools: Mendeley

Mendeley is a (free) reference manager and viewer. I know that doesn’t sound too interesting, so let me
elaborate. Mendeley allows you to read, annotate, highlight, organize, and share articles, books, and other
references for your research. You can also search for existing or new papers (by author, title, year, notes…).
Not only does it provide a centralized system for both your references and your notes on your references,
Mendeley also allows you to assign these references to (multiple) projects—so you can have all your papers
for a given topic/project linked together. Mendeley links them in a way that does not duplicate the files, so
if a file exists in multiple projects, you can easily spread your notes across the projects. Mendeley also syncs
across your devices, so you can read the same paper and same annotations on your tablet, laptop, phone, etc.
Last, but not least, Mendeley will export reference documents for LaTeX, BibTeX, and Word/plain text (for a
single document or for a whole project).

See Mendeley’s own description of its features here.

15

https://www.mendeley.com
https://www.mendeley.com/reference-management/reference-manager/

Mendeley screenshot.

4 More

Finally, this simulation is cool.

16

http://flowingdata.com/2015/12/15/a-day-in-the-life-of-americans/

	Admin
	Midterm
	Problem sets
	Office hours next week
	Last week
	This week
	What you will need

	Standard errors
	Setup
	Tables
	Linear combinations
	Route 1: Analytical variance
	Route 2: Delta Method
	Nonlinear combinations

	Fun tools: Mendeley
	More

