
Section 8: OLS in asymptopia
Ed Rubin

Contents

1 Admin 1
1.1 A helpful function . 1
1.2 Last week . 2
1.3 This week . 2
1.4 What you will need . 2

2 Asymptopia 2
2.1 New assumptions . 2
2.2 Setting up . 3
2.3 Recalling results . 4
2.4 Confirmation by simulation . 4

3 Simulation: Consistency of OLS 4
3.1 Create the population . 4
3.2 Single-iteration function . 9
3.3 Simulation function . 9
3.4 Samples sizes . 10
3.5 Run the simulation . 12
3.6 Plot results . 12

4 Simulation: Asymptotic distribution 18

5 Are we in asymptopia? 22

6 Fun tools: Fira Code 27

7 Data-cleaning resources 28

1 Admin

1.1 A helpful function

The between() function (in dplyr) gives you a shortcut to (x >= left) & (x <= right). Its syntax: be-

tween(x, left, right), e.g.,

Define x
x <- 3

The "normal" way
(x >= 1) & (x <= 5)

[1] TRUE

1

The "between" way
dplyr::between(x, 1, 5)

[1] TRUE

1.2 Last week

Last week we discussed generalized least squared (GLS) and focused on a special case of GLS: weighted least
squares (WLS).

1.3 This week

OLS in asymptopia: N gets (very) big.

1.4 What you will need

Packages:

• New! (You probably need to install these packages):
– gridExtra arranges multiple plots on a page (vignette)
– VGAM offers more named distributions (we’ll used the Pareto)

• Previously used: dplyr, lfe, readr, magrittr, parallel, lfe, ggplot2, ggthemes, viridis

2 Asymptopia

Up to this point in the course, we made a set of assumptions and then derived the statistical properties (i.e.,
mean and variance) of estimators under these assumptions. We wanted our estimators to be unbiased and to
have minimum variance (across the class of unbiased (linear) estimators).

Asymptotics provides a different way of thinking about estimators. Rather than asking about the distributional
properties of an estimator (essentially asking what would happen if we took an infinite number of samples and
estimated our estimator in each sample), we now ask what happens to the estimator as the sample size grows
toward infinity (N → inf). Specifically, we really want to know if the estimator becomes indistinguishable
from the parameter asN approaches infinity. Wewill be really happy if the estimator approaches the parameter
quickly. And we will want to know the distribution of the estimator in asymptopia (e.g., asymptotic normality).

2.1 New assumptions

We also relax a bunch of assumptions, either dropping them (e.g., we no longer assume the error term is
normally distributed) or replacing them with less restrictive assumption (e.g., we replace strict exogeneity
with population orthogonality E [x′

iεi] = 0).

Thus, our assumptions are:

1. Linearity in parameters/disturbance: yi = x′
iβ + εi

2. yi and xi are both i.i.d. random variables

2

section07.html
https://cran.r-project.org/web/packages/gridExtra/vignettes/arrangeGrob.html

3. Population orthogonality between xi and εi

4. A (new) rank condition: r (E [x′
ixi]) = k

We will also assume that the regression includes a constant.

2.2 Setting up

Let’s set up.

Setup ----
Options
options(stringsAsFactors = F)

options(scipen = 10)

Packages
library(pacman)
p_load(dplyr, magrittr, parallel,

ggplot2, ggthemes, viridis, grid, gtable, gridExtra)

Directory
setwd("/Users/edwardarubin/Dropbox/Teaching/ARE212/Section08")
My ggplot2 theme
theme_ed <- theme(
legend.position = "bottom",

panel.background = element_rect(fill = NA),

panel.border = element_rect(fill = NA, color = "grey75"),

axis.ticks = element_line(color = "grey85"),

panel.grid.major = element_line(color = "grey95", size = 0.2),

panel.grid.minor = element_line(color = "grey95", size = 0.2),

legend.key = element_blank())

And load our functions

Functions ----
Function to convert tibble, data.frame, or tbl_df to matrix
to_matrix <- function(the_df, vars) {

Create a matrix from variables in var
new_mat <- the_df %>%

Select the columns given in 'vars'
select_(.dots = vars) %>%

Convert to matrix
as.matrix()

Return 'new_mat'
return(new_mat)

}

Function for OLS coefficient estimates
b_ols <- function(y, X) {

Calculate beta hat
beta_hat <- solve(t(X) %*% X) %*% t(X) %*% y

Return beta_hat

3

return(beta_hat)
}

2.3 Recalling results

Today we will confirm one of the crazier results that Max revealed in class: when our assumptions are valid
(linearity, population orthogonality, and asymptotic full rank), b, the OLS estimator of β,

1. is consistent for β

2. is asymptotically normally distributed—with mean β and variance σ2
(∑N

i x′
ixi

)−1

2.4 Confirmation by simulation

We are going to use a simulation to confirm this result. Simulation provides statisticians/econometricians
with a very powerful way to demonstrate potentially complex results. While simulations may not really prove
hypotheses, simulation can help you quickly confirm or disprove suspicions. If the analytical proof is it all
complicated, I will generally first write a simulation that demonstrates the idea.

First, let’s use a simulation to “confirm” that OLS is consistent for β. Then we will compare the distribution of
the OLS estimates for β to their theoretical asymptotic distribution.

3 Simulation: Consistency of OLS

What will we need for this simulation?

1. A big population from which we can draw increasingly large samples.
2. A function that draws a sample of n from the population and estimates b

3.1 Create the population

Now we create the population. Let’s stick with simple linear regression (the intercept plus one covariate).

1. We need a pretty big N that will allow us to samples that are sufficiently large to get us into asymptopia.
I’m going to go with a 100,000.

2. Just to make sure normality of xi or of ε is not driving our results, we will generate each variable from
a non-normal distribution.

• We will draw xi from a uniform distribution on [0, 100].
• We will create three different sets of εi to examine how the distribution of the disturbances affects the

asymptotic distribution of b.
– Standard normal: N(0, 1)
– Uniform on [−5, 5]
– A Poisson with λ = 1 which we then demean by substracting 1
– A strange bimodal Gamma distribution that we will define below

4

First, we will write a function that generates n random variables from our bimodal Gamma distribution. This
bimodal gamma will essentially flip a coin (Bernoulli) and then, based upon the coin’s outcome, draw a random
variable from one of two different Gamma distributions. To simplify things, we will define the default “coin”
to be fair (i.e., you have a 50-50 chances of receiving a draw from either distribution).

rbigamma <- function(n, prob = c(0.5, 0.5)) {

Draw n samples of T or F (our 'coin flip') with replacement
flips <- base::sample(x = c(T, F), size = n,

replace = T, prob = prob)

Draw n samples from Gamma with shape=5 and scale=1 (mean=7)
substract the mean (7) from the draws
gamma_7 <- rgamma(n = n, shape = 7, scale = 1)

Draw n samples from Gamma with shape=1 and scale=1 (mean=1)
substract the mean (1) from the draws
gamma_1 <- rgamma(n = n, shape = 1, scale = 1)

Combine the flips and the two gammas' draws
bi_gamma <- flips * gamma_7 + (!flips) * gamma_1

Demean the bimodal variables (weighting by 'prob')
bi_gamma <- bi_gamma - 7 * prob[1] - 1 * prob[2]

}

Let’s check the rbigamma() function (draw 100,000 samples and see what they look like).

Histogram
set.seed(12345)
qplot(rbigamma(1e5), geom = "histogram")

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

5

0

5000

10000

15000

20000

−5 0 5 10 15 20

rbigamma(100000)

co
un

t

Summary
set.seed(12345)
summary(rbigamma(1e5))

Min. 1st Qu. Median Mean 3rd Qu. Max.

-3.999992 -3.294732 -0.829443 0.008318 2.696532 19.610945

Okay. Now it’s time to actually build the population!

Set the seed
set.seed(12345)
Define the population size
N <- 1e5

Define the true beta
beta <- 5

Start the population
pop_df <- data.frame(
ones = 1,

x = runif(N, min = 0, max = 100),

e_norm = rnorm(n = N),

e_unif = runif(n = N, min = -5, max = 5),

e_pois = rpois(n = N, lambda = 1) - 1,

e_bg = rbigamma(n = N)

) %>% tbl_df()
Calculate the outcome variable: y = 1 + beat * x + error

6

pop_df %<>% mutate(
y_norm = 1 + beta * x + e_norm,

y_unif = 1 + beta * x + e_unif,

y_pois = 1 + beta * x + e_pois,

y_bg = 1 + beta * x + e_bg

)

Let’s take a look at the distribution of our various ε. First, let’s plot them using ggplot2 combined with the
arrangeGrob() function form the gridExtra package.

Generate 4 colors from 'viridis'
c4 <- viridis(n = 4, begin = 0.1, end = 0.8)

Generate 4 slightly lighter colors from 'viridis'
c4_l <- viridis(n = 4, begin = 0.4, end = 1)

Make a plot for the normal disturbances
gg_norm <- ggplot(data = pop_df, aes(x = e_norm)) +

geom_histogram(fill = c4[1], color = c4_l[1],

size = 0.1, bins = 30) +

xlab("Normal") +

ylab("Count") +

theme_ed

Make a plot for the uniform disturbances
gg_unif <- ggplot(data = pop_df, aes(x = e_unif)) +

geom_histogram(fill = c4[2], color = c4_l[2],

size = 0.1, bins = 30) +

xlab("Uniform") +

ylab("Count") +

theme_ed

Make a plot for the poisson disturbances
gg_pois <- ggplot(data = pop_df, aes(x = e_pois)) +

geom_histogram(fill = c4[3], color = c4_l[3],

size = 0.1, bins = 30) +

xlab("Poisson") +

ylab("Count") +

theme_ed

Make a plot for the bimodal gamma disturbances
gg_bg <- ggplot(data = pop_df, aes(x = e_bg)) +

geom_histogram(fill = c4[4], color = c4_l[4],

size = 0.1, bins = 30) +

xlab("Bernoulli-Gamma") +

ylab("Count") +

theme_ed

Combine the plots
gg_errors <- arrangeGrob(gg_norm, gg_unif, gg_pois, gg_bg,

Two columns
ncol = 2,

Title on top
top = "Distributions of our disturbances")

Print the grid the screen

7

grid.draw(gg_errors)

0

5000

10000

−3 0 3 6

Normal

C
ou

nt

0

1000

2000

3000

−3 0 3

Uniform

C
ou

nt

0

10000

20000

30000

0.0 2.5 5.0

Poisson

C
ou

nt

0

5000

10000

15000

20000

25000

−5 0 5 10 15

Bernoulli−Gamma

C
ou

nt

Distributions of our disturbances

Looking good! One takeaway: only one of these distributions looks normal—the normal one. Another obser-
vation: the Bernoulli-Gamma distribution looks a bit like a dinosaur.

Just to make sure our means are approximately zero, let’s calculate the means. When you have a lot of vari-
ables, you can whittle down the variables by combining dplyr’s select() function with its sub-functions like
matches(), starts_with(), contains(), one_of() and ends_with().

pop_df %>% select(starts_with("e_")) %>% summarize_each(funs = "mean")

`summarise_each()` is deprecated.

Use `summarise_all()`, `summarise_at()` or `summarise_if()` instead.

To map `funs` over all variables, use `summarise_all()`

A tibble: 1 x 4

e_norm e_unif e_pois e_bg

<dbl> <dbl> <dbl> <dbl>

1 -0.0001166984 -0.006406174 0.00203 0.00278964

Works for me!

Now let’s move on to writing the functions for our simulation.

8

3.2 Single-iteration function

Our function for this simulation needs to accomplish two tasks:

1. Draw a sample of size n from population.
2. Calculate b for the sample (and return the slope coefficient).

one_iter <- function(n, data) {

Draw 'n' observations from 'data'
tmp_df <- sample_n(tbl = data, size = n)

Define the X matrix (same across regressions)
x_mat <- to_matrix(tmp_df, c("ones", "x"))

Estimate OLS for each 'y'
b_norm = b_ols(

y = to_matrix(tmp_df, "y_norm"),

X = x_mat)[2]

b_unif = b_ols(
y = to_matrix(tmp_df, "y_unif"),

X = x_mat)[2]

b_pois = b_ols(
y = to_matrix(tmp_df, "y_pois"),

X = x_mat)[2]

b_bg = b_ols(
y = to_matrix(tmp_df, "y_bg"),

X = x_mat)[2]

Create a data.frame to return
coef_df <- data.frame(

The estimates
est = c(b_norm, b_unif, b_pois, b_bg),

The distributions
dist = c("normal", "uniform", "poisson", "bi-gamma"),

The sample size
n = n

)

Return coef_df
return(coef_df)

}

Note on efficiency: You want to avoid doing the same thing many times. For examples, my original func-
tion repeated X = to_matrix(tmp_df, c("ones", "x")) inside of each call to b_ols(). The new function
only calls the command to_matrix(tmp_df, c("ones", "x")) once. When you are going to run a func-
tion 40,000 times, little inefficiencies can add up quickly: we just reduced the number of times R calculates
to_matrix(tmp_df, c("ones", "x")) from 160,000 to 40,000. Pretty good.

3.3 Simulation function

We now have a function (one_iter()) that runs a single iteration for the simulation for a given sample size
(n) and a given dataset (data). Now, we will write a function (run_sim()) that runs one_iter() a specified

9

number of times (n_iter) for a given sample size (still n) and a given dataset (still data). Wewill accomplish all
of these tasks with a simple call to mclapply(), the Linux- and Mac-friendly parallelized version of lapply().

If you do not want to run this function in parallel, then set the n_cores argument equal to one when you run
the function (or in the function definition), i.e., n_cores = 1. Windows users: This function should still still
work for you, but it will not be in parallel. If you want to run it in parallel, you can change the function to use
parLapply(), as we did in the previous section. Apologies for using a function you cannot use; I wanted to
share the alternate method for parallelization.

Note the use of rep() below; rep() is a very useful function.

run_sim <- function(n, n_iter, data, n_cores = 4) {

Required packages
require(dplyr)
require(parallel)
require(magrittr)
Run 'one_iter' 'n_iter' times with sample size 'n'
run_df <- mclapply(

X = rep(n, n_iter),

FUN = one_iter,

data = data,

mc.cores = n_cores) %>% bind_rows() %>% tbl_df()
Return run_df
return(run_df)

}

3.4 Samples sizes

We are nearly ready to run the simulation, but before we do, we need to decide our sample size(s) and number
of iterations.

• We are going to take 10,000 samples for each sample size
• We are going to use sample sizes of 25, 100, 1,000, and 10,000.

We could call the run_sim() function for each sample size, e.g.,

Set the seed (again)
set.seed(12345)
Run the simulation with n = 25
sim_25 <- run_sim(
n = 25,

n_iter = 1e4,

data = select(pop_df, -starts_with("e")))
Run the simulation with n = 100
sim_100 <- run_sim(
n = 100,

n_iter = 1e4,

data = select(pop_df, -starts_with("e")))
Run the simulation with n = 1,000
sim_1k <- run_sim(

10

n = 1e3,

n_iter = 1e4,

data = select(pop_df, -starts_with("e")))
Run the simulation with n = 10,000
sim_10k <- run_sim(
n = 1e4,

n_iter = 1e4,

data = select(pop_df, -starts_with("e")))
Combine simulations
sim_df <- bind_rows(sim_25, sim_100, sim_1k, sim_10k)

Clean up
rm(sim_25, sim_100, sim_1k, sim_10k); gc()

But we are not going to run it that way—we want to be a bit more efficient. It might not be a bit deal here,
but what if you wanted to run the simulation for 1,000 different sample sizes? You probably would not want
to repeat what we just did above 1,000 times. We can instead modify a single line of the run_sim() function:
change rep(n, n_iter) to rep(n, each = n_iter).1 Note that this method forces you to run all sample
sizes with the same number of iterations (if you do not want this behavior, you need to use a different function
from rep(). mapply() combined with rep() would work, e.g., mapply(FUN = rep, 1:3, 4:6).).

To see what we are doing, compare

rep(c(10, 25, 1000, 10000), 3)

[1] 10 25 1000 10000 10 25 1000 10000 10 25 1000

[12] 10000

to

rep(c(10, 25, 1000, 10000), each = 3)

[1] 10 10 10 25 25 25 1000 1000 1000 10000 10000

[12] 10000

Okay. Let’s update the run_sim() function, as discussed above

run_sim <- function(n, n_iter, data, n_cores = 4) {

Required packages
require(dplyr)
require(parallel)
require(magrittr)
Run 'one_iter' 'n_iter' times with sample size 'n'
run_df <- mclapply(

X = rep(n, each = n_iter),

FUN = one_iter,

data = data,

mc.cores = n_cores) %>% bind_rows() %>% tbl_df()
Return run_df
return(run_df)

}

1The function actually would have worked already for multiple sample sizes, but this change makes that fact—and the results—
much clearer.

11

3.5 Run the simulation

We are (finally) ready to run the simulation. So let’s get on with it!

Beware! This simulation takes some time to run: for each of the four sample sizes, we are applying one_iter()
10,000 times—resulting in 40,000 runs of one_iter(). And… for each of these 40,000 iterations, one_iter()
samples from pop_df and calculates four coefficients (one for each of the distributions we used to generate the
disturbances). Thus, in the end, we run 160,000 regressions. You can tell the simulation to use fewer iterations
by changing n_iter. In addition, to make our code a bit more efficient (less computationally intensive), I use
select() to grab only the variables we want in the data argument—we do not need the disturbances to run
our regressions.

Set the seed (again)
set.seed(12345)
Define our desired sample sizes
sizes <- c(25, 100, 1e3, 1e4)

Run the simulation function 'run_sim()'
sim_df <- run_sim(n = sizes, n_iter = 1e4,

data = select(pop_df, -starts_with("e")))

3.6 Plot results

Now that we have the data from our simulation, let’s plot our results. Specifically, we will plot the distribution
of coefficient estimates, by sample size, for each of the distributions of the disturbances.

Let’s start with a single distribution—the simulations resulting from the normally distributed disturbances
(dist or "normal" in our simulation dataset). We use our old friend filter() to grab the results from the
normal disturbances. In addition, we will use the stat = density argument to geom_line() to draw lines
for the densities of the distributions of the coefficient estimates. Finally, we will use as.character(n) for the
fill to get different fill colors for the various sample sizes.

ggplot(data = filter(sim_df, dist == "normal"),

aes(x = est, fill = as.character(n))) +

geom_density(stat = "density", alpha = 0.6, size = 0.05) +

xlab(expression(b[OLS])) +

ylab("Density") +

ggtitle(paste("Distribution of OLS coefficients",

"with normal disturbances")) +

scale_fill_viridis("Sample size:", discrete = T,

direction = -1) +

theme_ed

12

0

500

1000

4.98 5.00 5.02

bOLS

D
en

si
ty

Sample size: 100 1000 10000 25

Distribution of OLS coefficients with normal disturbances

Everything is looking good except for the order of the labels in the legend. What’s going on here? Because
fed our sample sizes n to ggplot() as characters, R alphabetizes the levels when it creates the legend. For
example,

Numeric:
100 < 23

[1] FALSE

Characters:
"100" < "23"

[1] TRUE

While I tend to avoid using the factor class of objects, we’ve reached a case where factors will be very helpful.
Specifically, factors will be useful in this task because they allow us to define both the levels and the labels of
a variable. Let’s add a column to our simulation dataset, in which we copy the existing n column and convert
it to a factor.

The factor() function wants

1. x, the vector that we want to convert to factor
2. levels, the values of x
3. labels, the names we want to use for the values of x
4. ordered, logical for whether the values of x are ordered

We will also use a new function prettyNum() here that formats numbers. We will use it to add commas to
numbers—you should really only do this for printing numbers/labels, which is why we are doing it now.

13

For example,

prettyNum(1e4, big.mark=",", scientific = F)

[1] "10,000"

Okay, so let’s create this factor-version of n in sim_df

Add a factor version of 'n'
sim_df %<>% mutate(
n_fac = factor(

x = n,

levels = sizes,

labels = prettyNum(sizes, big.mark=",", scientific = F),

ordered = T)

)

Check our new variable
sim_df$n_fac %>% head()

[1] 25 25 25 25 25 25

Levels: 25 < 100 < 1,000 < 10,000

sim_df$n_fac %>% tail()

[1] 10,000 10,000 10,000 10,000 10,000 10,000

Levels: 25 < 100 < 1,000 < 10,000

Now we make the plot again…

ggplot(data = filter(sim_df, dist == "normal"),

aes(x = est, fill = n_fac)) +

geom_density(stat = "density", alpha = 0.6, size = 0.05) +

xlab(expression(b[OLS])) +

ylab("Density") +

ggtitle(paste("Distribution of OLS coefficients",

"with normal disturbances")) +

scale_fill_viridis("Sample size:", discrete = T,

direction = -1) +

theme_ed

14

0

500

1000

4.98 5.00 5.02

bOLS

D
en

si
ty

Sample size: 25 100 1,000 10,000

Distribution of OLS coefficients with normal disturbances

Much better.

So what do we see here? Evidence of bOLS converging to to the true parameter! In other words: OLS appears
to be consistent… at least when the disturbances are normal.

We want to know whether OLS is consistent when the disturbances are not normal, since we no longer assume
the disturbances are normal. So let’s repeat this plot for each of the four distributions that generated the
disturbances.

Because factors really are pretty helpful with plots, let’s create another factor variable—this time it will be for
our distribution variable dist.

sim_df %<>% mutate(dist_fac = factor(
x = dist,

levels = c("bi-gamma", "normal", "poisson", "uniform"),

labels = c("Bernoulli-Gamma", "Normal", "Poisson", "Uniform")

))

Now we plot. To create the previous plot for each distribution, we just need to change two things:

1. Use the full sim_df (remove the filter())
2. Add facet_grid(), which will create multiple plots based upon one or more variables. Specifically, we

will use facet_grid(dist_fac ~ .), which tells ggplot2 to create a new plot (row) for each value of
dist_fac. We will also specify scales = "free_y" to let the y-axis vary from plot to plot.

ggplot(data = sim_df,

aes(x = est, fill = n_fac)) +

geom_density(stat = "density", alpha = 0.6, size = 0.05) +

15

xlab(expression(b[OLS])) +

ylab("Density") +

ggtitle(paste("Distribution of OLS coefficients",

"with normal disturbances")) +

scale_fill_viridis("Sample size:", discrete = T,

direction = -1) +

facet_grid(dist_fac ~ ., scales = "free_y") +

theme_ed

16

B
ernoulli−

G
am

m
a

N
orm

al
P

oisson
U

niform

4.90 4.95 5.00 5.05 5.10

0

100

200

300

0

1000

2000

3000

0

1000

2000

3000

0

100

200

300

400

500

bOLS

D
en

si
ty

Sample size: 25 100 1,000 10,000

Distribution of OLS coefficients with normal disturbances

17

Keeping in mind that we’ve allowed the y-axis to vary, what do these graphs tell us? First, it appears as though
OLS is consistent in estimating the true parameter regardless of the distribution of the disturbances: as N
(sample size) approaches infinity in each of the plots, the distribution of the coefficients tightens around the
true parameter value (5).

Great!

If you are more interested in numbers than pictures:

sim_df %>% group_by(dist_fac, n_fac) %>%

summarize(mean = mean(est), std_dev = sd(est)) %>%

knitr::kable(digits = 4,

col.names = c("Distribution", "N", "Mean", "Std. Dev."))

Distribution N Mean Std. Dev.

Bernoulli-Gamma 25 5.0005 0.0256
Bernoulli-Gamma 100 5.0001 0.0127
Bernoulli-Gamma 1,000 5.0001 0.0039
Bernoulli-Gamma 10,000 5.0001 0.0012
Normal 25 5.0001 0.0073
Normal 100 5.0001 0.0035
Normal 1,000 5.0001 0.0011
Normal 10,000 5.0001 0.0003
Poisson 25 4.9999 0.0072
Poisson 100 4.9999 0.0035
Poisson 1,000 4.9999 0.0011
Poisson 10,000 4.9999 0.0003
Uniform 25 4.9998 0.0207
Uniform 100 4.9998 0.0101
Uniform 1,000 4.9999 0.0032
Uniform 10,000 4.9999 0.0010

Again, we see that for each distribution, as N increases, the standard deviation of the coefficient estimates
diminishes.

4 Simulation: Asymptotic distribution

The second remarkable aspect of OLS’s asymptotics is the convergence in distribution of b to a normally dis-
tributed random variable. Let’s check this feature too.

For this task, we will only look at the largest sample size from our simulation—10,000—since we need the
asymptotics to kick in.

Our “check” of the asymptotic distribution will involve 1. Plot the histograms of coefficient estimates for each of
the disurbance-generating distributions 2. Plot a smoothed density over the histograms (sort of superfluous to

step 1) 3. Plot the normal density function over the histograms—with mean β and variance σ2
(∑N

i x′
ixi

)−1

18

We are going to cheat a little bit and grab the standard deviation from our coefficient estimates, rather than
calculating it analytically.2 Let’s do this step now.

Summaries of our point estimates
est_df <- sim_df %>%

filter(n == 1e4) %>%

group_by(dist) %>%

summarize(mean_est = mean(est), sd_est = sd(est))

Now for the plot. We will again make use of filter() to grab the coefficient estimates for only the 10,000-
obseration samples. We will (again) make four plots and plot them together using arrangeGrob() and
grid.draw().

Make the four individual plots:

Normal disturbances
sim_norm <- ggplot(aes(x = est),

data = filter(sim_df, dist == "normal", n == 1e4)) +

geom_histogram(aes(y = ..density..),

fill = "grey90", color = "grey65",

size = 0.1, bins = 50) +

geom_line(stat = "density",

color = "violetred2", size = 0.6) +

stat_function(
geom = "line", fun = dnorm,

color = "slateblue4", linetype = "dashed", size = 0.8,

args = list(
mean = filter(est_df, dist == "normal")$mean_est,

sd = filter(est_df, dist == "normal")$sd_est)

) +

ggtitle("Normal") +

xlab("") + ylab("") +

theme_ed

Uniform disturbances
sim_unif <- ggplot(aes(x = est),

data = filter(sim_df, dist == "uniform", n == 1e4)) +

geom_histogram(aes(y = ..density..),

fill = "grey90", color = "grey65",

size = 0.1, bins = 50) +

geom_line(stat = "density",

color = "violetred2", size = 0.6) +

stat_function(
geom = "line", fun = dnorm,

color = "slateblue4", linetype = "dashed", size = 0.8,

args = list(
mean = filter(est_df, dist == "uniform")$mean_est,

sd = filter(est_df, dist == "uniform")$sd_est)

) +

2It’s not really cheating—we haven’t reached infinity yet, and we want the distributions to have a hope of matching.

19

ggtitle("Uniform") +

xlab("") + ylab("") +

theme_ed

Uniform disturbances
sim_pois <- ggplot(aes(x = est),

data = filter(sim_df, dist == "poisson", n == 1e4)) +

geom_histogram(aes(y = ..density..),

fill = "grey90", color = "grey65",

size = 0.1, bins = 50) +

geom_line(stat = "density",

color = "violetred2", size = 0.6) +

stat_function(
geom = "line", fun = dnorm,

color = "slateblue4", linetype = "dashed", size = 0.8,

args = list(
mean = filter(est_df, dist == "poisson")$mean_est,

sd = filter(est_df, dist == "poisson")$sd_est)

) +

ggtitle("Poisson") +

xlab("") + ylab("") +

theme_ed

Uniform disturbances
sim_bg <- ggplot(aes(x = est),

data = filter(sim_df, dist == "bi-gamma", n == 1e4)) +

geom_histogram(aes(y = ..density..),

fill = "grey90", color = "grey65",

size = 0.1, bins = 50) +

geom_line(stat = "density",

color = "violetred2", size = 0.6) +

stat_function(
geom = "line", fun = dnorm,

color = "slateblue4", linetype = "dashed", size = 0.8,

args = list(
mean = filter(est_df, dist == "bi-gamma")$mean_est,

sd = filter(est_df, dist == "bi-gamma")$sd_est)

) +

ggtitle("Bernoulli-Gamma") +

xlab("") + ylab("") +

theme_ed

Arrange the plots together:

'Join' the plots
gg_sim <- arrangeGrob(
sim_norm, sim_unif, sim_pois, sim_bg,

Two columns
ncol = 2,

Title on top
top = textGrob(expression(paste(

20

"Asymptotic distributions of ", b[OLS])),

gp = gpar(fontsize = 16, font = 3), check = T),

left = textGrob("Density", vjust = 2, rot = 90),

bottom = textGrob(expression(b[OLS]), vjust = -1)

)

Print the grid the screen
grid.draw(gg_sim)

0

400

800

1200

4.9990 4.9995 5.0000 5.0005 5.0010 5.0015

Normal

0

100

200

300

400

4.9975 5.0000 5.0025 5.0050

Uniform

0

400

800

1200

4.9990 4.9995 5.0000 5.0005 5.0010

Poisson

0

100

200

300

4.9950 4.9975 5.0000 5.0025 5.0050

Bernoulli−Gamma

Asymptotic distributions of bOLS

bOLS

D
en

si
ty

I’d say the distributions look pretty normal. But if you want a more rigorous test than Ed’s histogram-based
opinion, you have a few options, e.g., the Kolmogorov-Smirnov test and the Shapiro-Wilk test. R has built-in
functions for these tests (shapiro.test() and ks.test()), and since we are not officially covering these tests
in ARE 212, we’ll use the canned versions of the function.

The Shapiro-Wilk test function will accept up to 5,000 estimates, so we will randomly sample 5,000 of our

21

coefficient estimates from the Poisson-generated sample (with a sample size of 10,000)

Set the seed
set.seed(12345)
The Shapiro-Wilk test
sim_df %>%

Subset for Poisson and n = 10,000
filter(dist == "poisson", n == 1e4) %>%

Sample 5,000 of the rows
sample_n(size = 5e3) %$%

Grab the variable 'est'
est %>%

The actual Shaprio-Wilk test function
shapiro.test()

##

Shapiro-Wilk normality test

##

data: .

W = 0.99969, p-value = 0.6691

We can use our full sample for the Kolmogorov-Smirnov test function, but we need to give it a mean and
variance for the normal distribution against which we are testing our data (as we did above in the plots).

ks.test(
x = filter(sim_df, dist == "poisson", n == 1e4)$est,

y = "pnorm",

mean = filter(est_df, dist == "poisson")$mean_est,

sd = filter(est_df, dist == "poisson")$sd_est)

##

One-sample Kolmogorov-Smirnov test

##

data: filter(sim_df, dist == "poisson", n == 10000)$est

D = 0.0064484, p-value = 0.8

alternative hypothesis: two-sided

Both tests fail to reject the null hypothesis that our data are normally distributed.

5 Are we in asymptopia?

Finally, let’s repeat our simulation with disturbances that are less well behaved. Enter the Pareto distribution.
The Pareto distribution offers the unique feature of having infinite variance for certain parameter values.

Why do we care about infinite variance? We care because the Lindeberg-Levy Central Limit Theorem (CLT)
requires finite variance. And why do we care about what the Lindeberg-Levy CLT requires? We care about
what the Lindeberg-Levy CLT requires because we use it to prove the asymptotic normality of b. Specifically,
we use the Lindeberg-Levy CLT to to prove the asymptotic distribution of x′

iεi, which requires finite variance
of x′

iεi. In short: when we allow εi to have infinite variance, we lose the Lindeberg-Levy CLT and asymptotic
normality of b.

22

We will now use the VGAM package for its rpareto() function. If we set its parameters scale = 2 and shape

= 1, then the variance of our variable is infinite. See it in action with 10 million draws:

p_load(VGAM)
rpareto(n = 1e7, scale = 2, shape = 1) %>% var()

[1] 15345753

Big variance!

Load the VGAM package
p_load(VGAM)
Set the seed
set.seed(12345)
Define the population size
N_par <- 1e6

Create a population
par_df <- data.frame(
e = rpareto(N_par, scale = 2, shape = 1))

Demean our disturbances
par_df %<>% mutate(e = e - mean(e))
Add x and ones
par_df %<>% mutate(
ones = 1,

x = runif(N_par, 0, 100),

y = 1 + 5 * x + e

) %>% tbl_df()

Let’s check the percentiles of our Pareto-distributed disturbances

quantile(par_df$e, probs = seq(0, 1, 0.1))

0% 10% 20% 30% 40%

-27.551417 -27.330677 -27.051920 -26.694963 -26.220252

50% 60% 70% 80% 90%

-25.551901 -24.551344 -22.869922 -19.531406 -9.511747

100%

2701207.741665

Pretty crazy stuff.

Define new simulation functions:

one_par <- function(n, data) {

Draw 'n' observations from 'data'
tmp_df <- sample_n(tbl = data, size = n)

Estimate OLS
b_par = b_ols(

y = to_matrix(tmp_df, "y"),

X = to_matrix(tmp_df, c("ones", "x")))[2]

Create a data.frame to return
coef_df <- data.frame(

The estimates

23

est = b_par,

The sample size
n = n

)

Return coef_df
return(coef_df)

}

run_par <- function(n, n_iter, data, n_cores = 4) {

Required packages
require(dplyr)
require(parallel)
require(magrittr)
Run 'one_par' 'n_iter' times with sample size 'n'
run_df <- mclapply(

X = rep(n, each = n_iter),

FUN = one_par,

data = data,

mc.cores = n_cores) %>% bind_rows() %>% tbl_df()
Return run_df
return(run_df)

}

Now let’s run the simulation 10,000 times with sample sizes of 10,000.

par_10k <- run_par(
n = 1e4,

n_iter = 1e4,

data = par_df)

What does the distribution of parameters from this simulation look like?

Pareto disturbances
ggplot(data = par_10k, aes(x = est)) +

geom_histogram(aes(y = ..density..),

fill = "grey90", color = "grey65",

size = 0.1, bins = 50) +

geom_line(stat = "density",

color = "violetred2", size = 0.6) +

stat_function(
geom = "line", fun = dnorm,

color = "slateblue4", linetype = "dashed", size = 0.8,

args = list(
mean = mean(par_10k$est),
sd = sd(par_10k$est))

) +

ggtitle("Distribution of coefficients from Pareto disturbances",

subtitle = "Sample size of 10,000") +

xlab(expression(b[OLS])) +

ylab("Density") +

24

theme_ed

0

1

2

−5 0 5 10

bOLS

D
en

si
ty

Sample size of 10,000
Distribution of coefficients from Pareto disturbances

This distribution does not look very close to normal.

ks.test(
x = par_10k$est,

y = "pnorm",

mean = mean(par_10k$est),
sd = sd(par_10k$est))

##

One-sample Kolmogorov-Smirnov test

##

data: par_10k$est

D = 0.30683, p-value < 2.2e-16

alternative hypothesis: two-sided

Kolmogorov and Smirnov agree: not normal.

Just to make sure we cannot solve the problem with more data, let’s try sample sizes of 100,000.

par_100k <- run_par(
n = 1e5,

n_iter = 1e4,

data = par_df)

What does the distribution of coefficients look like now?

25

Pareto disturbances
ggplot(data = par_100k, aes(x = est)) +

geom_histogram(aes(y = ..density..),

fill = "grey90", color = "grey65",

size = 0.1, bins = 50) +

geom_line(stat = "density",

color = "violetred2", size = 0.6) +

stat_function(
geom = "line", fun = dnorm,

color = "slateblue4", linetype = "dashed", size = 0.8,

args = list(
mean = mean(par_100k$est),
sd = sd(par_10k$est))

) +

ggtitle("Distribution of coefficients from Pareto disturbances",

subtitle = "Sample size of 100,000") +

xlab(expression(b[OLS])) +

ylab("Density") +

theme_ed

0

1

2

3

3.5 4.0 4.5 5.0 5.5

bOLS

D
en

si
ty

Sample size of 100,000
Distribution of coefficients from Pareto disturbances

ks.test(
x = par_100k$est,

y = "pnorm",

mean = mean(par_100k$est),

26

sd = sd(par_100k$est))

##

One-sample Kolmogorov-Smirnov test

##

data: par_100k$est

D = 0.23558, p-value < 2.2e-16

alternative hypothesis: two-sided

Not so normal, my friends. The takeaway? Assumptions matter: we need finite variance to get asymptotic
normality.

6 Fun tools: Fira Code

Fira Code is a “monospaced font with programming ligatures”. As you probably know, most programming is
done in a monospaced font. However, some character combinations look a bit weird in monospaced fonts, e.g.,
R’s famous <-, or <=, or != (and some combinations look a bit strange in regardless of monospacing). Ligatures
attempt to correct for some of this strangeness by connecting the characters a bit. I find it makes spending my
entire life staring at a monospaced screen a bit more enjoyable.

Here’s a side-by-side comparison.

27

https://github.com/tonsky/FiraCode

Ligatures!

7 Data-cleaning resources

A few people asked me about data cleaning in R. First off—in my opinion—R is fantastic for cleaning data.
Here are a few of my favorite packages:

• data.table: particularly good with large datasets. Similar to dplyr but with a different syntax. (web-
site)

• stringr: quick and relatively straightforward string (character) manipulation. (vignette)
• lubridate: for dates (vignette)

I’ve also heard good things about tidyr for reshaping, which is part of the tidyverse.

28

https://github.com/Rdatatable/data.table/wiki/Getting-started
https://github.com/Rdatatable/data.table/wiki/Getting-started
https://cran.r-project.org/web/packages/stringr/vignettes/stringr.html
https://cran.r-project.org/web/packages/lubridate/vignettes/lubridate.html
http://tidyverse.org

The folks at RStudio also provide a bunch of cheatsheets for things ranging from importing data to data visu-
alization data wrangling to R Markdown to regular expressions.

Last, UC Berkeley’s D-Lab has a lot of resources, including training sessions and experts who will meet with
you and answer your questions. I’ll try to cover as much as I can in our approximately 50 weekly minutes in
section, but in case you need more, D-Lab is a great place to start.

D-Lab

• Training schedule, including upcoming sessions in data wrangling, machine learing, and ggplot2

• Other services

29

https://www.rstudio.com/resources/cheatsheets/
https://github.com/rstudio/cheatsheets/raw/master/source/pdfs/data-import-cheatsheet.pdf
https://www.rstudio.com/wp-content/uploads/2016/11/ggplot2-cheatsheet-2.1.pdf
https://www.rstudio.com/wp-content/uploads/2016/11/ggplot2-cheatsheet-2.1.pdf
https://www.rstudio.com/wp-content/uploads/2015/02/data-wrangling-cheatsheet.pdf
https://www.rstudio.com/wp-content/uploads/2015/03/rmarkdown-reference.pdf
https://www.rstudio.com/wp-content/uploads/2016/09/RegExCheatsheet.pdf
http://dlab.berkeley.edu/training
http://dlab.berkeley.edu/services

	Admin
	A helpful function
	Last week
	This week
	What you will need

	Asymptopia
	New assumptions
	Setting up
	Recalling results
	Confirmation by simulation

	Simulation: Consistency of OLS
	Create the population
	Single-iteration function
	Simulation function
	Samples sizes
	Run the simulation
	Plot results

	Simulation: Asymptotic distribution
	Are we in asymptopia?
	Fun tools: Fira Code
	Data-cleaning resources

