
Section 3: Functions and loops
Ed Rubin

Contents

1 Admin 1
1.1 What you will need . 1
1.2 Summary of last time . 2
1.3 Helpful for the problem set . 2
1.4 Summary of this section . 6

2 Cleaning up 6

3 Custom functions 6
3.1 Custom function basics . 7
3.2 An OLS function . 7
3.3 Piping %>% . 11
3.4 Quality check . 12

4 Loops 13
4.1 for() loops . 14
4.2 lapply() . 14

5 Simulation 17
5.1 Examining bias in one sample . 17
5.2 Examining bias in many samples . 18

6 Extensions/challenges 20

1 Admin

1. Change in office hours this week: Friday, 1:30pm–3pm in Giannini 254 (plus the 1.5-hour slot on
Wednesday that already passed).

2. Change in office hours next week: Moved to Friday, 1pm–3pm in Giannini 254.
3. I apologize for all of the scheduling problems. We should be clear from here on out.
4. Problem set 1 is due on Wednesday, the 7th of February.

1.1 What you will need

Packages:

• Previously used: pacman, dplyr, and haven

• New: lfe

Data: The auto.dta file.

1

1.2 Summary of last time

In Section 2, we covered the data structures of vectors and matrices.

1.2.1 More on formats: Numeric vs. double

Someone asked about double versus numeric. It turns out that numeric is a more general class/mode. Numeric
objects come in different modes. Specifically, numeric objects can be either double-precision or integer (single-
precision is not really an option in R, unless you are calling C or Fortran at a lower level).

In practice:

Does as.numeric() create integers or doubles?
is.double(as.numeric(1))
[1] TRUE

is.integer(as.numeric(1))
[1] FALSE

Are integers and doubles numeric?
is.numeric(as.double(1))
[1] TRUE

is.numeric(as.integer(1))
[1] TRUE

1.2.2 Follow up: Vectorized operations

I want to point out that I probably did not give vectors a fair shake. While seemingly simple, R allows you to
do a lot of things with vectors that might be much more difficult in other languages. Specifically, R allows you
to apply (most) functions to vectors, rather than individual elements of a vector.

For an underwhelming example, if you want to square each number in a vector vec in R, you can simply
write vecˆ2. The alternative that many languages use requires iterating through the vector and squaring the
individual elements while simultaneously storing the results.

Define the vector
vec <- 1:5

Square the elements of the vector
vec2 <- vec^2

Look at the result
vec2

[1] 1 4 9 16 25

1.3 Helpful for the problem set

1.3.1 Speeding up knitr

You may have noticed that knitr can take a little while to compile your document (.Rnw or .Rmd) once you’ve
written a bunch of R code. This slowness is often due to the fact that R is re-running each of your code chunks

2

section02.html
http://faculty.nps.edu/sebuttre/home/R/data.html
http://faculty.nps.edu/sebuttre/home/R/data.html

every time you compile your file. To speed things up, you can tell R to cache the code chunk either—store the
code chunk in memory until something inside the chunk changes. You have two options here:

Option 1: At the beginning of your document, add a code chunk that has only the following two1 lines of code:

library(knitr)
opts_chunk$set(cache = T)

These two lines load the knitr package and then tell R to default to caching the chunks.

Option 2: Use the cache = true option within any/all code chunks in your document.2

For more on knitr chunks and options, check out the knitr website or my handy summary of LaTeX and
knitr.

1.3.2 Missing data (NA) in R

As you dive into your problem set, you may notice that there are some missing values. In R, missing values
typically take the form of NA (R remains agnostic as to why the datum is missing). NAs are very special and can
give you some challenges when coding.

First, what class is NA?

Class of NA
class(NA)

[1] "logical"

Class of NA from a vector of numbers
class(c(1, NA)[2])

[1] "numeric"

Class of NA from a vector of characters
class(c("hi", NA)[2])

[1] "character"

Class of NA from a vector of logicals
class(c(T, NA)[2])

[1] "logical"

Sort of makes sense, right? Any class could be missing a value. Also notice the funny behavior of NA with some
other functions:

Addition
2 + NA

[1] NA

Pasting
paste("Test", NA)

1You may not even need the first line of code.
2If you are adding cache = true for all of your chunks, you should opt for option #1.

3

https://yihui.name/knitr/options/
latexKnitr.html
latexKnitr.html

[1] "Test NA"

Luckily, R has a special function, just for NA, that tests whether an object is NA. What’s it’s name? is.na()

Demonstrate is.na()
is.na(NA)

[1] TRUE

is.na(1)

[1] FALSE

is.na(T)

[1] FALSE

In addition to simply missing data, R treats not-a-number (NaN) as NA:

What is NaN?
0 / 0

[1] NaN

Is NaN NA?
is.na(NaN)

[1] TRUE

Is NaN NA?
is.na(0 / 0)

[1] TRUE

However, NA and NaN are not truly identical

Are NaN and NA identical?
identical(NA, NaN)

[1] FALSE

Are they equal?
NA == NaN

[1] NA

So, what does all of this NA stuff mean for your data work? One of the most common things you will do when
working with data is subsetting/filtering. For instance, let’s define a (very simple) data frame called test_df.

Create the data frame
test_df <- data.frame(
x = c(NA, "A", "B", NA, "A"),

y = c(1:4, NA))

Print test_df to the screen
test_df

x y

1 <NA> 1

2 A 2

4

3 B 3

4 <NA> 4

5 A NA

Now, let’s use the dplyr function filter() to grab all observations whose value for the variable x is equal to
"A".3

Subset to x == A
dplyr::filter(test_df, x == "A")

x y

1 A 2

2 A NA

Notice that we get only the values of x that are equal to "A"—meaning we do not get values of x that are equal
to "B" or NA.

What if we take the opposite—those values not equal to "A"?

Subset to x != A
dplyr::filter(test_df, x != "A")

x y

1 B 3

Notice here that we get only observations with x equal to "B"—we still do not get values of x equal to NA. Why?
It’s because

NA == "A"

[1] NA

NA == "B"

[1] NA

So what do we do if we want values of x equal to both "A" and NA? is.na()! (Also using the logical operator
for or, i.e., |).

x equal to A or NA
dplyr::filter(test_df, x == "A" | is.na(x))

x y

1 <NA> 1

2 A 2

3 <NA> 4

4 A NA

There we go.

Finally, note that when you read a .csv file, you might need to tell R which characters should be considered
as NA. By default, read_csv() (in the readr package) reads "" and "NA" as NA. However, you might know that
the World Bank also uses ".." for missing data. Thus, you would want the following code to read in a World
Bank file:

3filter() is very similar to subset().

5

wb_df <- read_csv(
file = "world_bank.csv",

na = c("", "NA", ".."))

1.4 Summary of this section

The rest of this section covers functions, loops, and (some) simulation. We will take what you have been
covering in lecture—the ordinary least squares (OLS) estimator—and create our very own OLS function.4

Then we will play around with our OLS function.

2 Cleaning up

You will occasionally need to clear up some space for memory in R (or just tidy up your environment). To see
the objects you are currently storing in memory, you can either (1) look in the “Environment” pane of RStudio
or (2) use the ls() function (the function does not need any inputs).

If you decide to clean up, the function rm() is your friend. Here are three uses:

Remove a single object from memory
rm(item1)
Remove to (or more) objects from memory
rm(list = c("item2", "item3"))

rm(item2, item3)

Remove everything from memory
rm(list = ls())

You also can use the garbage control (gc()) function if you’ve loaded and removed several large datasets. It
is not the same as rm(); gc() has more to do with space allocated for objects than the space actually used.5

3 Custom functions

Up to this point, we have written some lines of R code that rely upon already-defined functions. We are now
going to try writing our own function.

There are a few reasons why you want to write your own function:

1. Max forbids you from doing your homework with the canned functions.
2. You have a task for which there is not a function.
3. You have a task that needs to be repeated, and you do not want to keep writing the same N → ∞ lines

of code over and over again.

More simply: if you need to do the same task more than twice, you should probably write a function for that
task, rather than copying and pasting the code dozens of times.

4Max has probably mentioned that you have to write your own functions in this class. While relying upon the canned R functions
is prohibited, you can use them to check your work.

5Sorry if this garbage control function is not clear: I’m not a computer scientist.

6

3.1 Custom function basics

To write a custom function in R, you use a function named function().6 The specific syntax for defining a
function looks like

foo <- function(arg1, arg2) {

...

return(final_stuff)
}

which says that we are defining a new function named foo that takes the arguments arg1 and arg2 (your
function can take as many or as few arguments as you like). The function then completes some tasks (you
would have actual code where you currently see ...), and then the function returns a value of final_stuff
using the return() function.7 Notice that after you define the function’s arguments, you open a curly bracket
and immediately start a new line. You end function’s definition by closing the curly bracket (on a line by itself).

For a quick example of a custom function, let’s define a function that accepts three arguments and returns the
product of the three arguments.

Define the function (named 'triple_prod')
triple_prod <- function(x, y, z) {

Take the product of the three arguments
tmp_prod <- x * y * z

Return 'tmp_prod'
return(tmp_prod)

}

Test the function
triple_prod(x = 2, y = 3, z = 5)

[1] 30

3.2 An OLS function

As discussed above, functions are very helpful when you have a task that you want to repeat many times. In
this class,8 you will estimate β̂ols many times. So let’s write a function that calculates the OLS estimator for
β.

Recall that for an outcome (dependent) variable y and a matrix of independent variables X (including a
column of ones for the intercept), the OLS estimator for β in the equation

y = Xβ + ε

is

β̂ols =
(
X′X

)−1 X′y
6So meta, right?
7You can get away with not using the return() function, but it is generally thought of as bad form.
8not to mention the life of an empirical economist

7

Part of writing a function is determining what you want and do not want the function to do. You have a lot of
options. Should it accept matrices, tibbles, data frames, etc.? Should the function automatically add a row for
the interept? Should it calculate the R2 or only β̂ols? …

For now, let’s assume the function will accept a tibble with the variables that we want for both y and X.
And let’s name the function b_ols. In addition to the tibble (let’s pass the tibble to the function through
the argument data), the function will probably need (at least) two more arguments: y and X, which will be
the name of the dependent variable and the names of the independent variables, respectively. Finally—for
now—let’s say the function will only return the OLS estimate for β.

The function should thus look something like

b_ols <- function(data, y, X) {

Put some code here...
return(beta_hat)

}

3.2.1 Aside: Load your data

Our OLS function will need some data. Load the auto.dta data from Section 1 (also in this section’s zip file).
(Remember: you will need the haven package to load the .dta file.) We’re not loading the data inside our
function because we’ll probably want to use the function on different datasets.

Setup ----
Options
options(stringsAsFactors = F)

Packages
library(pacman)
p_load(haven, dplyr)

Define directories
dir_class <- "/Users/edwardarubin/Dropbox/Teaching/ARE212/"

dir_sec3 <- paste0(dir_class, "Section03/")

Load the data ----
cars <- read_dta(
file = paste0(dir_sec3, "auto.dta"))

3.2.2 required packages

Spoiler: Our function is going to make use of the dplyr package. So let’s tell our function to make sure the
dplyr package is loaded. The function require() is the standard way to have a function make sure a package
is loaded. You use it just like the library()9 function. Since we know that we plan to use the dplyr package,
let’s require it within our function:

b_ols <- function(data, y, X) {

Require the 'dplyr' package
require(dplyr)

9Or p_load() if you’re really cool.

8

section01.html

Put some code here...
return(beta_hat)

}

3.2.3 select_ing variables

Let’s take an inventory of which objects we have, once we are inside the function. We have data, which is
a tibble with columns that represent various variables. We have y, the name of our outcome variable (e.g.,
weight). And we have X, a vector of the names of our independent variables (e.g. c("mpg", "weight")).10

The first step for our function is to grab the data for y and X from data. For this task, we will use a variation of
the select() function introduced in Section 1: select_(). The difference between select() and select_()

(besides the underscore) is that select() wants the variable names without quotes (non-standard evaluation),
e.g. select(cars, mpg, weight). This notation is pretty convenient except when you are writing your own
function. Generally, you will have variable/column names in a character vector, and select(cars, "mpg",

"weight") does not work. Here is where select_() comes in: it wants you to use characters (standard eval-
uation). There is one more complexity: while select_(cars, "mpg", "weight") works, select_(cars,
c("mpg", "weight")) does not. So if you have a vector of variable names, like our X, you need a slightly
different way to use select_(). The solution is the .dots argument in select_(): select_(cars, .dots =

c("mpg", "weight")) works!

So… we now want to select the y and X variables from data. Let’s do it.

Select y variable data from 'data'
y_data <- select_(data, .dots = y)

Select X variable data from 'data'
X_data <- select_(data, .dots = X)

This code should do the trick. To test it, you’ll need to define y and X (e.g., y = "price" and X = c("mpg",

"weight")).

3.2.4 Exercise: Finish the function

The function now looks like

b_ols <- function(data, y, X) {

Require the 'dplyr' package
require(dplyr)
Select y variable data from 'data'
y_data <- select_(data, .dots = y)

Select X variable data from 'data'
X_data <- select_(data, .dots = X)

Put some code here...
return(beta_hat)

}

Fill in the # Put some code here... section of our new function with the code needed to produce OLS
estimates via matrix operations. More kudos for fewer lines.

10I guess I’ve asserted these definitions of y and X. You’re free to do whatever you like.

9

section01.html

3.2.4.1 Hints/reminders:

• The data objects y_data and X_data are still tibbles. You eventually want matrices.
• Don’t forget the intercept.
• If you finish early, adapt the function to return centered R2, uncentered R2, and adjusted R2.

3.2.5 Matrices

We have a few tasks left:

1. Add an intercept (column of ones) to X_data

2. Convert the data objects to matrices
3. Calculate β̂ols via matrix operations

First, let’s add a column of ones to X_data. We will use mutate_().11 The mutate() and mutate_() functions
allow us to add new columns/variables to an existing data object. Often the new variables will be a combi-
nation of existing variables, but in our case, we just want a column of ones, so all we need to do is write
mutate_(X_data, "ones" = 1).

It is customary to have the intercept column be the first column in the matrix. We can use select_() again to
change the order of the columns: select_(X_data, "ones", .dots = X).

We will use the as.matrix() function to convert our tibbles to matrices.

Finally, once we have our matrices, we can use the basic matrix functions discussed in Section 2—namely %*%,
t(), and solve()—to calculate β̂ols = (X′X)−1 X′y.

Putting these steps together, we can finish our function:

b_ols <- function(data, y, X) {

Require the 'dplyr' package
require(dplyr)

Select y variable data from 'data'
y_data <- select_(data, .dots = y)

Convert y_data to matrices
y_data <- as.matrix(y_data)

Select X variable data from 'data'
X_data <- select_(data, .dots = X)

Add a column of ones to X_data
X_data <- mutate_(X_data, "ones" = 1)

Move the intercept column to the front
X_data <- select_(X_data, "ones", .dots = X)

Convert X_data to matrices
X_data <- as.matrix(X_data)

Calculate beta hat
beta_hat <- solve(t(X_data) %*% X_data) %*% t(X_data) %*% y_data

11You could use mutate() too.

10

section02.html

Change the name of 'ones' to 'intercept'
rownames(beta_hat) <- c("intercept", X)

Return beta_hat
return(beta_hat)

}

3.3 Piping %>%

Our OLS function is nice, but we redefined y_data and X_data a number of times. There’s nothing wrong with
these intermediate steps, but dplyr provides a fantastic tool %>% for bypassing these steps to clean up your
code. The operator is known as the pipe or chain command.12

The way the pipe (%>%) works is by taking the output from one expression and plugging it into the next
expression (defaulting to the first argument in the second expression). For example, rather than writing the
two lines of code

Select the variables
tmp_data <- select(cars, price, mpg, weight)

Summarize the selected variables
summary(tmp_data)
price mpg weight

Min. : 3291 Min. :12.00 Min. :1760

1st Qu.: 4220 1st Qu.:18.00 1st Qu.:2250

Median : 5006 Median :20.00 Median :3190

Mean : 6165 Mean :21.30 Mean :3019

3rd Qu.: 6332 3rd Qu.:24.75 3rd Qu.:3600

Max. :15906 Max. :41.00 Max. :4840

we can do it in a single line (and without creating the unnecessary object tmp_data)

cars %>% select(price, mpg, weight) %>% summary()
price mpg weight

Min. : 3291 Min. :12.00 Min. :1760

1st Qu.: 4220 1st Qu.:18.00 1st Qu.:2250

Median : 5006 Median :20.00 Median :3190

Mean : 6165 Mean :21.30 Mean :3019

3rd Qu.: 6332 3rd Qu.:24.75 3rd Qu.:3600

Max. :15906 Max. :41.00 Max. :4840

What is going on here? We’re plugging cars into the first argument of the select() expression, and then
plugging the output from select() into summary(). If you want to save the result from the last expression
(summary() here), use the normal method, e.g.

some_summaries <- cars %>% select(price, mpg, weight) %>% summary()

If it helps you remember what a pipe is doing, you can use a period with a comma:13

Four equivalent expressions
cars %>% select(price, mpg) %>% summary()

12See the package magrittr for even more pipe operators.
13Note: the period will actually allow you to shift the argument to which the prior expression’s output is sent.

11

cars %>% select(., price, mpg) %>% summary()
select(cars, price, mpg) %>% summary()
summary(select(cars, price, mpg))

You can see that pipes also help you avoid situations with crazy parentheses.

Now let’s apply these pipes to the OLS function above. Essentially any time you redefine an object, you could
have used a pipe. Also note that pipes can extend to the next line and are uninterrupted by comments.

b_ols <- function(data, y, X) {

Require the 'dplyr' package
require(dplyr)

Create the y matrix
y_data <- data %>%

Select y variable data from 'data'
select_(.dots = y) %>%

Convert y_data to matrices
as.matrix()

Create the X matrix
X_data <- data %>%

Select X variable data from 'data'
select_(.dots = X) %>%

Add a column of ones to X_data
mutate_("ones" = 1) %>%

Move the intercept column to the front
select_("ones", .dots = X) %>%

Convert X_data to matrices
as.matrix()

Calculate beta hat
beta_hat <- solve(t(X_data) %*% X_data) %*% t(X_data) %*% y_data

Change the name of 'ones' to 'intercept'
rownames(beta_hat) <- c("intercept", X)

Return beta_hat
return(beta_hat)

}

3.4 Quality check

Let’s check our function’s results against one of R’s canned regression functions. The base installation of R
provides the function lm(), which works great. However, we are going to use the felm() function from the
lfe package. The felm() function has some nice benefits over lm() that you will probably want at some point,
namely the ability to deal with many fixed effects, instrumental variables, and multi-way clustered errors.
(Don’t worry if you do not know what that last sentence meant. You will soon.)

Install/load the lfe package.

12

p_load(lfe)

Run the relevant regression with felm():14

Run the regression with 'felm'
canned_ols <- felm(formula = price ~ mpg + weight, data = cars)

Summary of the regression
canned_ols %>% summary()
##

Call:

felm(formula = price ~ mpg + weight, data = cars)

##

Residuals:

Min 1Q Median 3Q Max

-3332 -1858 -504 1256 7507

##

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1946.0687 3597.0496 0.541 0.59019

mpg -49.5122 86.1560 -0.575 0.56732

weight 1.7466 0.6414 2.723 0.00813 **

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

Residual standard error: 2514 on 71 degrees of freedom

Multiple R-squared(full model): 0.2934 Adjusted R-squared: 0.2735

Multiple R-squared(proj model): 0.2934 Adjusted R-squared: 0.2735

F-statistic(full model):14.74 on 2 and 71 DF, p-value: 4.425e-06

F-statistic(proj model): 14.74 on 2 and 71 DF, p-value: 4.425e-06

Run the regression with our function b_ols():

b_ols(data = cars, y = "price", X = c("mpg", "weight"))

price

intercept -49.512221

mpg 1.746559

weight 1946.068668

They match!

4 Loops

Loops are a very common programming tool. Just like functions, loops help us with repetitive tasks.

14felm(), like most regression functions I’ve seen in R, uses a formula where the dependent variable15 is separated from the inde-
pendent variables with a tilde (~).

13

4.1 for() loops

for loops are classic. You give the program a list and then tell it to do something with each of the objects in
the list. R’s power with vectors obviates some uses of for loops, but there are still many cases in which you
will need some type of loop. You will also hear people say that for loops are a bad idea in R. Don’t entirely
believe them. There are cases where you can do things much faster with other types of loops—particularly if
you are going to parallelize and have access to a lot of computing resources—but for loops can still be very
helpful.

In R, the for loop has the following structure

for (i in vec) {

Complex computations go here
}

Example of an actual (simple) for loop:

for (i in 1:5) {

print(paste("Hi", i))

}

[1] "Hi 1"

[1] "Hi 2"

[1] "Hi 3"

[1] "Hi 4"

[1] "Hi 5"

A final note on for loops in R: R keeps the last iteration’s values in memory. This behavior can help with
troubleshooting, but it can also sometimes lead to confusion.

While for loops are great, we’re going to focus on a different type of loop today…

4.2 lapply()

The lapply() function is part of a family of apply() functions in R (apply(), lapply(), sapply(), mapply(),
etc.). Each function takes slightly different inputs and/or generates slightly different outputs, but the idea is
generally the same. And the idea if very similar to that of a loop: you give lapply() a list or vector X and a
function FUN, and lapply() with then apply the function FUN to each of the elements in X. lapply() returns
a list16 of the results generated by FUN for each of the elements of X.

Finally, it is worth noting that lapply() sticks the elements of X into the first argument of the function FUN

(you can still define other arguments of FUN) in a way very similar to the pipe operator (%>%).

Here is a simplistic example of lapply():

lapply(X = 0:4, FUN = sqrt)

[[1]]

16This is our first timemeeting a list. Lists are yet another way to store data in R—like vectors, matrices, data.frames, and tibbles. You
can create lists with the list() function much like you create vectors with the c() function: my_list <- list("a", 1, c(1,2,3)).
Lists differ in that they do not require a uniform data type, as demonstrated in the list in the preceding sentence. Lists also utilize a
slightly different indexing: you access the third element of the list my_list via my_list[[3]]. Notice the extra set of square brackets.

14

[1] 0

##

[[2]]

[1] 1

##

[[3]]

[1] 1.414214

##

[[4]]

[1] 1.732051

##

[[5]]

[1] 2

Notice the slightly different notation of the list, relative to the vectors we previously discussed.

Unlike for loops, nothing done inside of an lapply() call is kept in memory after the function finishes (aside
from the final results, if you assign them to an object).

4.2.1 lapply() meets b_ols()

What if we want to regress each of the numerical variables in the cars data on mpg and weight (with the
exception of rep78, because I don’t really understand what “Repair Record 1978” means)? Surprise, surprise:
we can use lapply().

What should our X value be? The numeric variables excluding rep78, mpg, and weight. Let’s create a vector
for it.

target_vars <- c("price", "headroom", "trunk", "length", "turn",

"displacement", "gear_ratio", "foreign")

With respect to the FUN argument, keep in mind that lapply() plugs the X values into the first argument of
the function. For b_ols(), the first argument is data, which is not what we currently want to vary. We want
to vary y, which is the second argument. Rather than redefining the b_ols() function, we can augment it by
wrapping another function around it.17 For example,

function(i) b_ols(data = cars, y = i, X = c("mpg", "weight"))

This line of code creates a new, unnamed function with one argument i. The argument i is then fed to our
b_ols() function as its y argument. Let’s put it all together…

The 'lapply' call
results_list <- lapply(
X = target_vars,

FUN = function(i) b_ols(data = cars, y = i, X = c("mpg", "weight"))

)

The results
results_list

17We can write an lapply() statement that corresponds to our for() loop: lapply(X = 1:5, FUN = function(i) paste("Hi",
i)).

15

[[1]]

price

intercept -49.512221

mpg 1.746559

weight 1946.068668

##

[[2]]

headroom

intercept -0.0098904309

mpg 0.0004668253

weight 1.7943225731

##

[[3]]

trunk

intercept -0.082739270

mpg 0.003202433

weight 5.849262628

##

[[4]]

length

intercept -0.35546594

mpg 0.02496695

weight 120.11619444

##

[[5]]

turn

intercept -0.059092537

mpg 0.004498541

weight 27.323996368

##

[[6]]

displacement

intercept 0.7604918

mpg 0.1103151

weight -151.9910285

##

[[7]]

gear_ratio

intercept 0.0007521123

mpg -0.0004412382

weight 4.3311476331

##

[[8]]

foreign

intercept -0.0194295266

mpg -0.0004677698

weight 2.1235056112

16

These results are a bit of a mess. Let’s change the list into a more legible data structure. We will use lapply()
to apply the function data.frame() to each of the results (each of the elements of results_list). Finally,
we will use the bind_cols() function from dplyr to bind all of the results together (so we don’t end up with
another list).18

Cleaning up the results list
results_df <- lapply(X = results_list, FUN = data.frame) %>% bind_cols()
We lose the row names in the process; add them back
rownames(results_df) <- c("intercept", "mpg", "weight")

Check out results_df
results_df

price headroom trunk length turn

intercept -49.512221 -0.0098904309 -0.082739270 -0.35546594 -0.059092537

mpg 1.746559 0.0004668253 0.003202433 0.02496695 0.004498541

weight 1946.068668 1.7943225731 5.849262628 120.11619444 27.323996368

displacement gear_ratio foreign

intercept 0.7604918 0.0007521123 -0.0194295266

mpg 0.1103151 -0.0004412382 -0.0004677698

weight -151.9910285 4.3311476331 2.1235056112

4.2.2 Exercise: Check your work

Check the results in results_df using lapply() and felm(). Hint: remember to check the class of the object
returned felm(). You might want to try the coef() function on the object returned by felm().

5 Simulation

One of the main reasons to learn the apply() family of functions is that they are very flexible (and easily
parallelized).19 This flexibility lends them to use in simulation, which basically means we want to generate
random numbers and to test/observe properties of estimators. And repeat many times.

5.1 Examining bias in one sample

We often examine the (finite-sample) properties of estimators through simulation.

Let’s start with a function that generates some data, estimates coefficients via OLS, and calculates the bias.

A function to calculate bias
data_baker <- function(sample_n, true_beta) {

First generate x from N(0,1)

18We could alternatively try sapply(), which attempts to return nicely formatted objects. However, you never know if it is going to
succeed in nicely formatting your results. If it doesn’t, then it returns a list. This sort of inconsistency is not very helpful in programming,
so I generally avoid sapply().

19Parallelization basically means that you run things at the same time—instead of waiting until one thing finishes to start the
next. Thus some tasks can be parallelized—simulations for unbiased estimators—while other tasks that depend upon the output from
previous iterations are more difficult to parallelize. We’ll talk more about parallelization in section 5.

17

section05.html

x <- rnorm(sample_n)
Now the error from N(0,1)
e <- rnorm(sample_n)
Now combine true_beta, x, and e to get y
y <- true_beta[1] + true_beta[2] * x + e

Define the data matrix of independent vars.
X <- cbind(1, x)

Force y to be a matrix
y <- matrix(y, ncol = 1)

Calculate the OLS estimates
b_ols <- solve(t(X) %*% X) %*% t(X) %*% y

Convert b_ols to vector
b_ols <- b_ols %>% as.vector()
Calculate bias, force to 2x1 data.frame()
the_bias <- (true_beta - b_ols) %>%

matrix(ncol = 2) %>% data.frame()
Set names
names(the_bias) <- c("bias_intercept", "bias_x")

Return the bias
return(the_bias)

}

This function will calculate the bias of the OLS estimator for a single sample,

Set seed
set.seed(12345)
Run once
data_baker(sample_n = 100, true_beta = c(1, 3))

bias_intercept bias_x

1 -0.02205339 -0.09453503

5.2 Examining bias in many samples

But what if you want to run 10,000 simulations? Should you just copy and paste 10,000 times? Probably
not.20 Use lapply() (or replicate()). And let’s write one more function wrapped around data_baker().

A function to run the simulation
bias_simulator <- function(n_sims, sample_n, true_beta) {

A function to calculate bias
data_baker <- function(sample_n, true_beta) {

First generate x from N(0,1)
x <- rnorm(sample_n)
Now the error from N(0,1)
e <- rnorm(sample_n)
Now combine true_beta, x, and e to get y

20Definitely not.

18

y <- true_beta[1] + true_beta[2] * x + e

Define the data matrix of independent vars.
X <- cbind(1, x)

Force y to be a matrix
y <- matrix(y, ncol = 1)

Calculate the OLS estimates
b_ols <- solve(t(X) %*% X) %*% t(X) %*% y

Convert b_ols to vector
b_ols <- b_ols %>% as.vector()
Calculate bias, force to 2x1 data.frame()
the_bias <- (true_beta - b_ols) %>%

matrix(ncol = 2) %>% data.frame()
Set names
names(the_bias) <- c("bias_intercept", "bias_x")

Return the bias
return(the_bias)

}

Run data_baker() n_sims times with given parameters
sims_dt <- lapply(

X = 1:n_sims,

FUN = function(i) data_baker(sample_n, true_beta)) %>%

Bind the rows together to output a nice data.frame
bind_rows()

Return sim_dt
return(sims_dt)

}

To run the simulation 10,000 times, use the code (can take a little while):

Set seed
set.seed(12345)
Run it
sim_dt <- bias_simulator(n_sims = 1e4, sample_n = 100, true_beta = c(1,3))
Check the results with a histogram
hist(sim_dt[,2],
breaks = 30,

main = "Is OLS unbiased?",

xlab = "Bias")

Emphasize the zero line
abline(v = 0, col = "blue", lwd = 3)

19

Is OLS unbiased?

Bias

F
re

qu
en

cy

−0.4 −0.2 0.0 0.2 0.4

0
20

0
40

0
60

0
80

0

In section 5 we’ll talk about parallelization, which can greatly reduce the time of your simulations.

6 Extensions/challenges

1. How few characters can you use to write a function that estimates coefficients via OLS? Can you keep
this function parsimonious while expanding its flexibility (allowing it to take different data structures
with and without intercepts)?

2. Can you find any speed/efficiency improvements over my data_baker() and bias_simulator() func-
tions? Feel free to include parallelization.

3. How would you generate vectors of two random variables that are correlated (i.e. x and ε are not
independent)? Does this correlation affect anything in your bias simulations?

20

section05.html

	Admin
	What you will need
	Summary of last time
	Helpful for the problem set
	Summary of this section

	Cleaning up
	Custom functions
	Custom function basics
	An OLS function
	Piping %>%
	Quality check

	Loops
	for() loops
	lapply()

	Simulation
	Examining bias in one sample
	Examining bias in many samples

	Extensions/challenges

